

4-quadrant controller
Technical reference
multicomp

F144-MS-1V1C1TI6DO-3
F144-MS-1V1C1TI12DO-3
F144-MS-1V1C1TI6DO-3
F144-MS-1V1C1TI12DO-3

Your partner for network analysis
© KBR Kompensationsanlagenbau GmbH
Misprints, printing errors
and technical changes reserved
1 Functional principle of the controller 8
2 Control and display panel 10
3 Setting range of the configurable parameters: 14
4 Installation and electrical connection of the system 16
4.1 General, very important information 16
4.2 Current transformer connection and measuring voltage 17
4.3 Current transformer dimensions 17
4.4 Standard connection diagrams 17
5 Commissioning the system 20
5.1 General notes on commissioning 20
6 Navigation and device displays. 22
7 Device displays of the main menus 24
8 Description of the individual display windows 26
8.1 Initialization window: 26
8.2 Commissioning window if no stage power is programmed 26
8.3 Start menu window: 29
8.4 Stage state window: 31
8.5 Service window: 32
8.6 Commissioning window: 33
8.7 Switching performance window: 37
8.8 Error message window: 39
8.9 Extras window: 40
$9 \quad$ Notes on troubleshooting 44
10 System and safety device maintenance 45
11 Technical data. 46
11.1 Measuring and display values 46
11.2 Measuring accuracy 47
11.3 Measuring principle 47
11.4 Device memory 47
11.5 Other limits: 47
11.6 Power supply 47
11.7 Hardware inputs and outputs 48
11.7.1 Hardware inputs 48
11.7.2 Hardware outputs 48
11.8 Electrical connection 49
11.9 Mechanical data 50
11.10 Standards and miscellaneous. 50
12 Selection of cables and fuses 51
13 Data point description for the Modbus protocol 52
multicomp F144-3 52
13.1 Modbus commands supported. 53
13.2 Data formats 53
13.3 Interface parameters 56
13.4 Device settings 56
13.5 Data points 62
13.6 Device information 65

Dear customer

Thank you for choosing a KBR product.
To familiarize yourself with operation and configuration of the device, we recommend that you read this manual carefully. This will enable you to make use of the entire range of functions that this high-quality product offers.

The individual chapters serve to explain the technical details of the device and show how to properly install and start up the device to prevent damage.

This user manual is included in the scope of delivery of the device and must be accessible to the user at all times (e.g. in the switchgear cabinet). Even if the device is resold to third parties, the manual remains an inherent part of the device.

Although the utmost care has been taken in putting together this user manual, errors may still occur. We would be very grateful if you could notify us of any errors or unclear descriptions you may notice. The form included in the appendix to this manual can be used to send us corrections or suggested improvements.

Yours sincerely,
KBR GmbH Schwabach

These operating instructions contain notes that must be observed for your personal safety and to avoid damage to equipment. These instructions are identified by a warning sign or information symbol, depending on the degree of hazard they represent.

DANGEROUS VOLTAGE

means that death, major injury or substantial property damage may occur if the appropriate safety measures are not taken.

CAUTION

means that minor injuries or property damage may occur if the appropriate safety precautions are not taken.

NOTE

is an important piece of information on the product, product handling or the respective part of the user manual to which special reference is made.

Disclaimer

The contents of this manual have been checked with the described hardware and software components. However, deviations may occur so that no guarantee can be made for complete agreement with the documentation. The specifications given in this manual are checked on a regular basis; necessary corrections will be included in the next revision.

We appreciate your corrections and comments.

Safety notes

In order to prevent operating errors, handling of the device has been kept as simple as possible. This will enable you to use the device very quickly. In your own interests, however, we recommend you read the following safety instructions carefully.

DANGEROUS VOLTAGE

The applicable DIN/VDE regulations must be observed for installation!

Power supply connection, setup and operation of the device may only be performed by qualified personnel. Qualified personnel as defined in the safety notes in this user manual are personnel with electrical engineering qualifications, knowledge of the national accident prevention regulations and safety engineering standards as well as of the installation, commissioning and operation of the device.
To reduce the risk of fire or shock hazard, the device must not be exposed to rain or humidity!
Before connecting the device to the power supply, check whether the local power supply conditions comply with the specifications on the device nameplate.
A faulty connection may result in the destruction of the device!
When connecting the device, ensure that the data given in the connection chart is complied with (see "Connection diagram") and that the connection cables are not live. When wiring, always ensure that all wiring material used is neither damaged nor defective and that the polarity is correct!
In order to ensure proper and safe product operation, ensure that the device is transported, stored, installed and assembled and carefully operated and maintained in accordance with the specifications.
If the device is visibly damaged it should generally be considered unsuitable for use and disconnected from the power supply. Troubleshooting, repairs and maintenance work may only be carried out in our facilities or after contacting our service team.
Unauthorized opening of the the device will render your warranty null and void. Correct operation can no longer be guaranteed!
Opening the device may expose live parts. Capacitors in the device may still be charged, even if the device has been disconnected from all power sources. Do not operate open devices under any circumstances!

Systems that are at risk from lightning strikes must be fitted with lightning protection for all input and output cables (see the "Protective measures" chapter for recommendations).

Product liability

You have purchased a high-quality product.

We only use components of the highest quality and maximum reliability.
Each device is subjected to long-term testing before it is delivered.
For details on product liability, please refer to our
general terms and conditions for electronic equipment.
The assured device properties only apply if the device has been operated in accordance with its intended use!

Disposal

Devices that are faulty, obsolete or no longer in use must be disposed of properly.

If required, we will dispose of the devices for you.

1 Functional principle of the controller

The controller's microprocessor records the mains voltage and current consumption of the entire plant by measuring transformer inputs (A/D converter) and, on the basis of this, calculates the active and reactive power ratio of the power supply. The controller operates in four quadrants.

Energy recovery in generator operation is detected and indicated by a "G" flashing on the LCD display. While in generator operation, compensation to cos phi 1.00 (output cos phi) is performed. To prevent alternating switching operations, this target cos phi is maintained for 15 minutes after generator operation ends.

The compensated power required for the target cos phi is calculated continuously. If the power difference corresponds to the set hysteresis (switch-on and switch-off hysteresis), the stages are switched depending on the required compensation power. Manually switched stages are, however, not included in the optimization. In case of identical stages with identical power, the stage that has been switched off for the longest time is switched on.

Having fewer switching operations results in optimum adjustment. Even for large systems, sensitive controls can be set up with just a few modules. Stage ratios do not need to be considered. After compensation, switching operations are interrupted for a configurable time. To prevent alternating switching operations, you can increase the stage switch-off delay by up to 150% of the smallest stage's power.

In light load operation (secondary measuring current under the limit), the stages are switched off after the set delay time.

The integrated temperature measurement input monitors the temperature in the reactive power compensation system and causes the fan to be switched on if a predefined temperature threshold is exceeded and switched off again when the temperature drops below the reset temperature.

To prevent the fan from switching unnecessarily often, it has a run-on time of 30 minutes. You can switch the fan (output 6 or 12, depending on the device version) on or off permanently in the "Stage state" menu. If you select "Auto", the fan output is controlled by the temperature measuring input.

You can also protect the system by defining a switch-off temperature. This makes it possible to switch stages off in time if there is a risk of damage due to overheating. Once the temperature drops below the reset temperature, the stages are switched on again one after the other.

The settings are saved on an EEPROM so that they are not lost in the event of a power failure.

The measuring cycle of the controller used to record the necessary network parameters takes approx. 20 ms .

NOTE

Limit for overvoltage switch-off $=$ measuring voltage $+10 \%$ (taking the measuring voltage ratio into account). This value cannot be changed and serves to protect the compensation system.
In the event of an error, the compensation stages are switched off and "Overvoltage" is displayed.

2 Control and display panel

multicomp F144-MS-1V1C1TI6DO-3

multicomp F144-MS-1V1C1TI12DO-3

Operating elements:

1 LCD displaying the current status and user prompts
2 Number of possible controller output lines
3 Two sensor buttons for parameter configuration
4 Two sensor buttons for menu selection

General notes on operating the sensor buttons:

$\boldsymbol{\sim}$ button	Start configuration and reset input
button	Change values during configuration
button	Navigate through submenus
button	Navigate through main menus and save button during configuration

Button combinations:

$\boldsymbol{\lambda}$ and
Delete accumulated values and reset the system

Default controller settings after reset:

- Consumption target cos phi:
- Recovery target cos phi:
- Alarm cos phi:
- Main transformer current:
- Measuring voltage:
- Rot. field U:
- Rot. field I:
- Current attenuation coefficient:
- Voltage attenuation coefficient:
- Attenuation coefficient Qmiss:
- Alarm delay:
- Idle time:
- Switching interval:
- Hysteresis connection:
- Hysteresis switch-off:
- Operating cycle count:
- Stage switching mode:
- Sampling rate:
- Harmonics monitoring:
- Limit THD
0.95 inductive
1.00 (cannot be changed)
0.92 inductive

Primary current 1000 A
Secondary current 5 A
Primary voltage 400 V Ph-Ph
(corresponds to 230 V Ph-N)
Secondary voltage 400 V Ph-Ph
(corresponds to 230 V Ph-N)
L1-N
L1
0
0
0
20 minutes (1200 s)
30 ms
50 ms
100% of lowest stage power
100% of lowest stage power
active
Automatic
Automatic
Activated by set limit
8\%

- Stage power:
- Max. stage power per switching cycle:
- Stage power monitored:
- Discharge time:
- Password:
- Language display:
- Contrast setting:
- Brightness setting:
- Dimmer brightness:
- Light load limit:
- Light load delay:
- Temperature measurement:
- Output 6/12 as stage or fan:
- Fan switch-on temperature:
- Fan switch-off temperature:
- System switch-off temperature:
- System switch-on temperature:
- Learning mode menu display:
- Touch tones:

Error message dialog after reset:

No measuring voltage:
No stage power:
PFC too small:
THD too high:
No measuring current:
Light load operation:
Temperature switch-off:

Not set

0 kvar
Deactivated
20 ms
No password (9999, meaning all functions are accessible)

English

5
5
0
15 mA
60 minutes
On
Fan output
$>28^{\circ} \mathrm{C}$
$<23^{\circ} \mathrm{C}$
$>48^{\circ} \mathrm{C}$
$<43^{\circ} \mathrm{C}$
Off
On

Message and alarm relay

The controls in the compensation systems are preset.

The following parameters need to be checked or set:

- Target cos phi in accordance with the electricity supplier regulations (for kVA tariff cos phi = 1)
- Primary current and secondary current in accordance with input current transformer.
- Voltage transformer ratio, if required

NOTE

Upon delivery, the bus protocol is set to: Modbus RTU, baud rate 38400, parity even
This setting can only be changed manually on the device.
Performing a "Reset to default settings" has no effect on changed settings.

3 Setting range of the configurable parameters:

Stage state:
Stage switching mode

Commissioning:
Password

Primary current
Secondary current
Consumption target $\cos \varphi$
Recovery target $\cos \varphi$
Primary voltage
Secondary voltage
Discharge time
Max. stage power per switching cycle
Rot. field U
Rot. field I
Stage power learning mode
Stage power

Switching performance:
Hysteresis connection
Hysteresis switch-off
Alarm relay time
Idle time
Switching interval
FTS alarm $\cos \varphi$
Attenuation coefficient Qmiss
Voltage attenuation coefficient
Current attenuation coefficient

Automatic, Manual off, Manual on

4 digits, numerical, no password = 9999 (meaning all functions are accessible)
1 A to 999999A
1 and 5 A
ind. 0.80 to cap. 0.80
ind. 1.0 (cannot be changed)
1 V to 999999 V Ph-Ph
1 V to 999 V Ph-Ph
20 to 9999 ms

0 to 9999 kvar
L1N, L2N, L3N, L12, L23, L31
L1, L2, L3, -L1, -L2, -L3
Yes, No
0 to 999.9 kvar

70 to 150 \%
70 to 150 \%
3 to 3000 sec .
20 to 9999 ms
50 to 9999 ms
ind. 0.70 to 1.00
0 to 9
0 to 9
0 to 9

Error message dialog:

Missing measuring voltage	The setting Message or
Missing stage power	Alarm relay or Message and
PFC too small	Alarm relay or Off
THD too high	is identical for all errors!
No measuring current	
Light load	
Temperature switch-off	

Extras:

Display language	German, English, French, Spanish
Limit THD	0 to 10%, harmonics monitoring can be disabled (0\%)
Scanning frequency	Automatic, fixed 50 Hz , fixed 60 Hz
Stage power monitored	Yes, No
Reset	Run
Contrast setting	0 to 10
Brightness setting	0 to 9
Dimmer brightness	0 to 9
Light load limit	$15 \mathrm{~mA}, 50 \mathrm{~mA}$
Light load delay	1 minute to 60 minutes
Temperature measurement	On / Off
Output 6 or 12 (depending on the controller version)	Compensation stage, fan output
Switching threshold fan on	$>0^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}$
Switching threshold fan off	$0^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}$
Switching threshold system off	$>0^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}$
Switching threshold system on	$0^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}$
Bus mode	Modbus (eBus for production)
Learning mode menu display	On / Off
Touch tones	On / Off

4 Installation and electrical connection of the system

4.1 General, very important information

- Tighten all screws and connections. Failure to do so will void the warranty.
- Install and operate the device in accordance with the applicable VDE regulations (in particular VDE 0100) and the electricity supplier's regulations.
- Connection cross-sections and fuse protection table: see annex.

CAUTION!

Failure to observe the connection conditions or exceeding the permissible voltage range may result in damage or destruction of the device.

Before connecting the power supply to the device, please note:

- The voltage and frequency must comply with the specifications on the nameplate. Observe the limits specified in this manual!
- The electrical installation of the building must have a circuit-breaker or fuse for the power supply voltage, in accordance with the applicable local regulations.
- Install an isolating switch that is easily accessible to the user and close to the device. It must be marked as an isolating switch for this device.
- Install a suitable, correspondingly marked fuse and isolating switch for the voltage measurement inputs nearby (or, alternatively, a circuit breaker). These voltages are hazardous live!
- Voltages that exceed the permissible rated voltages must be connected via a voltage transformer.
- Measuring voltages and measuring currents must come from the same network.

4.2 Current transformer connection and measuring voltage

If possible, mount the transformer in the phase that corresponds to L1 of the compensation system (determine by means of voltage measurement). All capacitor and consumer currents must be determined. In case of an unbalanced phase load (in small companies), install the transformer in the phase with the highest load.

- P1 (K) to energy supply (indicated on the transformer).
- P2 (L) to load outputs
- S1 (k) with terminal k (controller terminal 20) and
- Connect S2 (I) to terminal I (controller terminal 21) in the compensation system (use a two-color cable!).

Wire cross section: up to $3 \mathrm{~m}=1.5 \mathrm{~mm}^{2}$, up to $6 \mathrm{~m}=2.5 \mathrm{~mm}^{2}$. For longer distances, we recommend using a 1 A transformer. The controller is designed for connection to 5 A and 1 A transformers; switching is done by firmware.

If you use existing transformers, the current paths must always be connected in series. The secondary transformer current needs to be at least 15 mA . For lower currents, no capacitors are connected ("No measuring current" is displayed). Connect the measuring voltage in accordance with the connection diagram.

4.3 Current transformer dimensions

The current transformer is designed on the basis of the current consumption of the consumers, not the capacitor current. If, in addition to the reactive power controller, other measuring devices are connected to the same transformer, the transformer power needs to be chosen accordingly. If the transformer and the controller are far apart, losses also occur in the current transformer cable, which need to be taken into consideration.

4.4 Standard connection diagrams

NOTE

The stage outputs are optocoupler outputs. If direct fan control is required, install an external switch relay (power supply input max. 30 VDC , max. 35 mA , switching capacity output 250 VAC / 2A, floating).

Connection measuring voltage $\mathrm{Ph}-\mathrm{N}$

Connection measuring voltage
Ph-Ph

5 Commissioning the system

5.1 General notes on commissioning

The controller is configured as a compensation system component (see connection diagram) by default. The following settings need to be configured or checked:

- Target cos phi according to the energy supplier's specifications.
- Primary and secondary current in the main circuit in accordance with the mounted transformer.
- Set the measuring voltage transformer data, if necessary.
- If no stage powers have been configured, the controller will switch to the Commissioning menu after initialization. Next, stage power programming can be performed in the settings menu, or using the learning process.

NOTE

You can start the learning process from the "Learning mode activate" submenu in the Commissioning menu, using the Enter/Input buttons. If the "Learning mode" window does not open, please check that - Menu on is set for "Learning mode" in the "Extras" menu.

The settings are saved on an EEPROM so that they are not lost in the event of a power failure.

- Switch on a sufficient number of inductive consumers (e.g. motors) before switching the compensation system on. A transformer current of at least 15 mA needs to flow in the secondary circuit for the controller to be activated. Below this limit, the error message "No transformer current" will be displayed. Check the transformer connection (is the transformer ratio too high?).
- If all connection conditions are OK, the instantaneous power factor cos phi should be displayed after initialization, e.g. normally, when no capacitors are connected, cos phi is between 0.6 and 0.9 inductive, (e.g. cos phi 0.80 ind).
- If a capacitive value is displayed, or if the "G" symbol is flashing, the phase allocation of the current and voltage measurement is incorrect.

In the Commissioning programming menu, the phase allocation can be changed using the functions Rot. field U and Rot. field I (provided that there is no generator in operation at the time).

The first switching operation may take up to 10 seconds. The stages are switched in set intervals until compensation occurs. The displayed cos phi must increase to at least the set target cos phi.

6 Navigation and device displays

7 Device displays of the main menus

Different main menus and submenus can be used for current displays and controller configuration.

Initialization menu - no input possible
multicomp F144-3 6-stage or 12-stage

multicome be Th

Tnitiglizetion
multicomf 12 Th
Tnitielizetion

Start menu window - display current values multicomp F144-3 6-stage

```
Ems% 0.71 IHD
```


AmFm

multicomp F144-3 12-stage

$$
\begin{aligned}
& \text { EET D. } 71 \text { IHD } \\
& \text { ARARARARARAB }
\end{aligned}
$$

Stage state window - stage state can be changed

$$
\begin{gathered}
\cdots+\cdots=+\cdots+= \\
+\cdots+4+4
\end{gathered}
$$

Service window - display and deletion options
Seruice
next $4 \rightarrow$

Commissioning window - operating parameter entry

Gomis sionine

next $4 \rightarrow$

Switching performance window - influencing switching performance

Suitch. Ferform.

 next $4 \rightarrow$Error message menu - editing the error message dialog
Mesese menu

$$
\text { next } 4 ;
$$

Extras window - setting special parameters

Extres

ஈ+ $4 \div$

8 Description of the individual display windows

8.1 Initialization window:

multicomp F144-3 6-stage or 12-stage

> multiemme ge Th
> Initiglizetion
multicome 12 Th
Initielizetion

This is displayed after connecting the power supply to the controller.

NOTE

Please do not press any sensor buttons during initialization, as they are adjusted automatically to ensure correct operation.

8.2 Commissioning window if no stage power is programmed

$$
\begin{gathered}
\text { Cmmi }= \pm \text { mine } \\
\text { next } 4 \div
\end{gathered}
$$

During initial startup of the multicomp F144-3, the Commissioning menu is displayed as the F144-3 start screen (after the initialization phase) once you have connected the power supply.
This menu is used for initial startup of the controller, where all necessary settings can be made.
If you wish to use a controller that is already integrated into a KBR compensation system by default, only the parameters of the current transformer need to be configured.
Press
to select submenus.

Password protection:

A password (a 4-digit numerical code, e.g. 4321) can be used to protect a system against unauthorized access to the configured parameters.
If the password should get lost, the controller can be unlocked with the master password 1976. To unlock a controller completely, enter the password 9999 (no password = 9999, all functions are accessible).
After unlocking a password protected controller, it is possible to press a button for up to 300 seconds. If no buttons are pressed during this time, the controller is then locked again.

The password can be set or changed by pressing
$\boldsymbol{\lambda}$ to start entering or to change the entry position, 泚 to change or set the password and to save the entry.

Configuring current transformer values:

All current transformer parameters need to be configured correctly for the compensation controller to function properly. The primary and secondary current of the transformer need to be set (submenu lprim. / Isec.). These parameters can be found on the nameplate of the current transformer. In addition, the phase allocation of the transformer needs to be configured correctly. This means that the phase ($\mathrm{L} 1, \mathrm{~L} 2, \mathrm{~L} 3$) which the current transformer is integrated in has to be set (submenu Rot. field I) in the controller. If the transformer connections are mixed up (k and I interchanged), this can be corrected with the setting -L1, -L2 and -L3.

Setting target cos phi:

You can ask your electricity supplier for the target cos, which should be set up at this point. By default, the target cos is set to 0.95 inductive (see the "Default settings" chapter).

Setting the voltage transformer parameters:

Set the primary voltage in the U primary submenu, the secondary voltage under U secondary and the phase allocation of the measuring voltage under Rot. field U. These settings apply to a standard network (voltage Ph-Ph 400 V primary, 400 V secondary). If you use a voltage transformer, configure the parameters indicated on the voltage transformer, e.g. $690 \mathrm{~V} / 100 \mathrm{~V}$, as well as the measuring mode, e.g. L12 for measuring voltage connection between phases L1 and L2.

Setting the discharge time:

Checking or, if necessary, changing the discharge time of the capacitor stages is a very important menu item. Please make sure that the correct value is set, otherwise the system could be damaged!

Configuring the capacitor stages:

There are two ways of configuring the capacitor stages. The stages can either be configured manually or using the auto configuration mode.

NOTE

The Auto configuration mode menu will not appear - if the "Learning mode" is deactivated in the "Extras" menu

It is important to set the stage power correctly. You can find the stage power on the nameplate of the stage or the circuit diagram and then program it manually. In this case, skip the menu item "Learning mode activate" and enter the power value individually for each stage.
If you want to activate learning mode, ensure that all previous submenu parameters have been configured correctly.
To activate learning mode, press change to Yes by pressing $\boldsymbol{\lambda}$ then press to confirm. The auto configuration then automatically sets the stage powers and discharge times, but these values need to be checked once the learning process has been completed to ensure that they are correct.

NOTE

If an error occurs in auto configuration mode (harmonics exceeding the limit, measuring voltage too high, missing measuring voltage), the process is interrupted and "Auto configuration mode - Error" is displayed. Auto configuration mode can be restarted once the cause of the error has been rectified.

System function test:

A function test should be performed after all values have been programmed step by step, by disconnecting the controller from the power supply for a few seconds.

The controller should start automatically after it is reconnected to the power supply. If the $\cos \varphi$ voltage is read in the start menu immediately after switching it on, the value for $\cos \varphi$ should be low and inductive. The controller then starts to switch on the individual capacitor stages.

The $\cos \varphi$, which can be read in the start menu, should have risen in comparison to its previous value, or it should rise when additional stages are switched on. If the compensation system is designed correctly, the controller should compensate to the set target cos phi after a while.

8.3 Start menu window:

Example: F144-3 12-stage

$\cos 0 \mathrm{~B} 7 \mathrm{THD}$ ARHM

This is displayed after the initialization window if the stage power has already been configured. The current total controller state and the currently measured CosPhi are measured here.

Example:

Line 1: currently measured CosPhi 0.71 inductive
Line 2: the controller switches on stages; stages 1 to 4 are already switched to automatic operation, where:

+	stages are switched on as compensation power is required.
$\boldsymbol{4}$	stages are switched off due to overcompensation.
\boldsymbol{m}	the stage has been switched to automatic mode.
\boldsymbol{t}	the stage has been switched on manually.
	the stage has been switched off manually. the stage's measured stage power does not correspond to the con- figured value (stage monitoring activated, see the Stage monitoring submenu of the Extras menu).

Press
to select submenus.

The current readings are displayed in the submenus:

Measuring voltage in volts depending on the selected connection type (Commissioning menu, Rot. field U submenu) in $\mathrm{Ph}-\mathrm{N}(\stackrel{\lambda}{*})$ or $\mathrm{Ph}-\mathrm{Ph}(\AA)$.

Main series transformer apparent current in amps (single-phase value).
Apparent power in kVA, projected as a 3-phase value (provided the network load is symmetrical).

Active power in kW, projected as a 3-phase value (provided the network load is symmetrical).

Reactive power in kvar, projected as a 3-phase value (provided the network load is symmetrical).

Compensation power to achieve the set target cos phi missing.
The missing compensation power is displayed up to a maximum value of 9999.9 kvar. If the value exceeds this limit, 9999.9 kvar is displayed

Power frequency in Hz
THD (Harm. U total) in \%, decisive for setting the THD limit (Extras menu, THD limit submenu)

Current temperature reading (if temperature measurement is activated; --- ${ }^{\circ} \mathrm{C}$ is displayed if measurement is deactivated)

Number of overtemperature switch-offs (if temperature measurement is activated; --- ${ }^{\circ} \mathrm{C}$ is displayed if measurement is deactivated)

It is important to know the firmware version of the controller, e.g. V 2.00R001 for support requests, as it can be used to deduce possible changes made to the device firmware.

8.4 Stage state window:

The submenus in this window display whether or not the capacitor stages connected are working in automatic mode, or if they are switched on or off permanently. The individual capacitor stages can be selected by pressing $\boldsymbol{\nabla}$.

You can change the stage state from Fitrie (Automatic) to ft (switched off permanently) orm (switched on permanently) by pressing $\boldsymbol{\lambda}$ to start entering values, ${ }^{2}$? to make changes or $\boldsymbol{\nabla}$ to save them.

NOTE

Capacitor stages that are permanently switched on or off are not available to calculate the optimizing automatic operation.

8.5 Service window:

$$
\begin{aligned}
& \text { Ewu }= \\
& \text { mext } 4+
\end{aligned}
$$

Press $\boldsymbol{\nabla}$ to select submenus.
The number of connections of each individual capacitor stage is displayed in the submenus of this window. You can delete the accumulated operating cycles for all stages by selecting Delete operating cycles and pressing $\boldsymbol{\lambda}$ and simultaneously.

In addition, the value in the menu item Missing comp. power maximum can be deleted by pressing $\boldsymbol{\lambda}$ and ${ }^{[2]}$ simultaneously, resetting the PFC too small message. If the set target cos phi is not reached, despite all available stages being switched on, this message is displayed after the set alarm delay time has elapsed.

The alarm delay can be set in the Switching performance / Alarm delay menu.
You can also delete the number of overtemperature switch-offs here (this menu item is only displayed if temperature measurement is activated and accumulated switch-offs are displayed).

8.6 Commissioning window:

> Comm $=$ meioning
> next

Press to select submenus.
A step-by-step description of the setup process is given in the submenus of this window. For systems which are already running, the parameters configured during setup can be read out here.

Password protection:

A password (a 4-digit numerical code, e.g. 4321) can be used to protect a system against unauthorized access to the configured parameters.
If the password is lost, the controller can be
unlocked using the master password 1976.
After unlocking a password protected controller, it is possible to press a button for up to 300 seconds. If no buttons are pressed during this time, the controller is then locked again.
The password can be set or changed by pressing $\boldsymbol{\lambda}$ to start entering or to change the entry position, L^{2} to change or set the password and to save the entry.

Configuring current transformer values:

All current transformer parameters need to be configured correctly for the compensation controller to function properly. The primary and secondary current of the transformer need to be set (submenu Iprim. / Isec.). These parameters can be found on the nameplate of the current transformer. In addition, the phase allocation of the transformer needs to be configured correctly. This means that the phase ($\mathrm{L} 1, \mathrm{~L} 2, \mathrm{~L} 3$) in which the current transformer is integrated in has to be set (Rot. field I submenu) in the controller. If the transformer connections are mixed up (k and I interchanged), this can be corrected with the setting -L1, -L2 and -L3.

CAUTION!

Changing the main current transformer parameters or voltage transformer values subsequently can directly influence the capacitor stages for which the stage power was determined using the auto configuration mode. This ensures that the stage power is adequately adjusted in case of a subsequent correction of the transformer parameters.
Manually configured stages are not applied.

Setting target cos phi:

You can ask your electricity supplier for the target cos phi, which should be set up at this point. By default, the target cos phi is set to 0.95 inductive (see the "Default settings" chapter).

Setting the voltage transformer parameters:

Set the primary voltage in the U primary submenu, the secondary voltage under U secondary and the phase allocation of the measuring voltage under Rot. field U. These settings apply to a standard network (voltage Ph-Ph 400 V primary, 400 V secondary). If you use a voltage transformer, configure the parameters indicated on the voltage transformer, e.g. $690 \mathrm{~V} / 100 \mathrm{~V}$, as well as the measuring mode, e.g. L12 for measuring voltage connection between phases L1 and L2.

Setting the discharge time:

Checking or, if necessary, changing the discharge time of the capacitor stages is a very important menu item. Please make sure that the correct value is set, otherwise the system could be damaged!

Setting the maximum stage power per switching cycle (switching operation):
To quickly compensate missing compensation power or overcompensation, it is possible to switch identical or different stage powers simultaneously. The number of stages to be switched simultaneously is determined by the value "Max. stage power per switching cycle".

Example:

If there is a missing compensation power of at least 50 kvar and a limit of 50 kvar for this function, the controller simultaneously switches 2×20 kvar and 1×10 kvar, for example.

The same applies for deactivation in case of overcompensation.
If the stage power limit is set lower than the value of the largest existing stage, but larger than " 0 ", the controller automatically uses the largest capacitor stage available.

If the maximum stage power is set to " 0 ", this function is deactivated and the controller switches each capacitor stage individually.

NOTE

If stage monitoring is activated, set a switching interval and idle time of 1000 ms each to prevent measurement errors caused by switching operations in quick succession. Additionally, we recommend setting the maximum stage power to " 0 " to prevent simultaneous switching of stages.

Configuring the capacitor stages:
There are two ways of configuring the capacitor stages. The stages can be configured manually or using the auto configuration mode. It is important to set the stage power correctly. The stage power is shown on the nameplate of the stage and on the circuit diagram
and can be configured manually. In this case, skip the menu item "Learning mode activate" and enter the power value individually for each stage.

NOTE

If you cannot select the Learning mode menu item, check whether menu "On" is selected for "Learning mode" in the "Extras" menu. After the learning process has been completed, all stages are switched to automatic mode.

If you want to activate learning mode, make sure that all previous submenu parameters have been configured correctly.

To activate learning mode, press $\boldsymbol{\square}$, change the setting to $\mathrm{Y}=\mathrm{m}$ b pressing ${ }^{2}$, then press to confirm.

After starting learning mode, stive flashes and the time remaining until the end of the learning cycle is displayed.

NOTE

The auto configuration then sets the stage power automatically, but these values need to be checked once the learning process has been completed. After the learning process has been completed, all stages are switched to automatic mode.

8.7 Switching performance window:

$$
\begin{gathered}
\text { wi trn: Ferfom } \\
\text { mext } 4+
\end{gathered}
$$

Press to select submenus.

The default switching performance settings (default settings) are displayed in the submenus of this window. These settings apply to most compensation systems.

NOTE

Check all parameters to ensure that they do not deviate from the specifications for this system.

The following submenus are available to affect switching performance:

- Hysteresis connection (default setting 100%, setting range 70 to 150%): This value defines the controller switch-on criterion. This means the controller would switch on at 100% missing compensation power relative to the smallest capacitor stage of the system.
- Hysteresis switch-off (default setting 100\%, setting range 70 to 150 \%): This value defines the controller switch-off criterion. This means the controller would switch off at 100% overcompensation relative to the smallest capacitor stage of the system.
- Alarm delay (default setting 1200 seconds, setting range 0 to 3000 seconds): This value defines the time until the message "PFC too small" is displayed. If the set target cos phi is not reached despite all available stages being switched on, this message is displayed after the set alarm delay time has elapsed.
- Idle time (default setting 20 ms , setting range 20 to 9999 ms): This value defines the time the controller is idle after compensation before another switching operation is performed (connection or disconnection).
- Switching interval (default setting 50 ms , setting range 50 to 9999 ms): This value defines the time the controller is idle between two switching operations.
- Alarm cos phi (default setting ind. 0.92, setting range ind. 0.70 to 1.0): This value is connected to the message PFC too small. If this value is not reached after the alarm delay has elapsed, despite all stages being switched on, the message PFC too small is displayed.
- Attenuation $\mathrm{Q}_{\text {miss }}$ (default setting 0 , setting range 0 to 9): This value defines the attenuation of the display and control behavior to prevent rapid parameter changes if compensation power is missing.
- Attenuation U (default setting 0 , setting range 0 to 9): This value defines the display attenuation to prevent rapid parameter changes of the measuring voltage.
- Attenuation I (default setting 0 , setting range 0 to 9): This value defines the display attenuation to prevent rapid parameter changes of the measuring current.

NOTE

Due to the default settings for the discharge time (20 ms) and switching inter$\mathrm{val}(50 \mathrm{~ms})$, an attenuation set subsequently (default setting 0) has no effect. The attenuation value set is only applied if the capacitor discharge time and the switching interval of the stages is greater than 100 ms .

8.8 Error message window:

Press $\boldsymbol{\text { to select submenus. }}$
The possible messages and the display configuration are displayed in the submenus of this window.

The following error messages can be configured:

Alarm submenu	Possible actions			
	$\stackrel{4}{0}$		$\begin{aligned} & \frac{\pi}{0} \\ & \frac{\pi}{0} \\ & \frac{y}{4} \\ & \frac{\pi}{4} \end{aligned}$	
No measuring voltage	\checkmark	\checkmark	\checkmark	\checkmark
No stage power	\checkmark	\checkmark	\checkmark	\checkmark
PFC too small	\checkmark	\checkmark	\checkmark	\checkmark
THD (voltage harmonics) too high	\checkmark	\checkmark	\checkmark	\checkmark
No measuring current	\checkmark	\checkmark	\checkmark	\checkmark
Light load operation	\checkmark	\checkmark	\checkmark	\checkmark
Temperature switch-off	\checkmark	\checkmark	\checkmark	\checkmark

If a submenu is selected (by pressing $\boldsymbol{\nabla}$), the error message dialog can be changed by pressing $\boldsymbol{\omega}$ to start entering values, 2 to change the settings and Δ to save them.

NOTE

The stage monitoring function (see Extras menu, Stage power monitored submenu) does not generate any messages, but marks the stages with an the Start menu window).

8.9 Extras window:

Press $\boldsymbol{\nabla}$ to select submenus.
Other possible settings are displayed in the submenus of this window:
If a submenu is selected (by pressing $\boldsymbol{\nabla}$), the settings can be changed by pressing $\boldsymbol{\lambda}$ to start entering values, ${ }^{2}$ to change the setting and to save it.

The following submenus are available:

- User language:

In this submenu, you can select the language for the LCD display (German, English, French or Spanish).

- Limit THD:

The harmonic switch-off limit refers to the total of all measuring voltage harmonics (Lim THD). The programming range is between 0 and 10\%. The setting can be adjusted in increments of 1%.

In addition, harmonics monitoring can also be disabled here (limit monitoring is deactivated if the setting is Lim $=0 \%$).
If voltage harmonics exceed the limit, an error message is displayed and a stage switch-off is performed.

- Sampling rate:

The power frequency tracing settings are displayed in this submenu. If the setting is "Auto", the sampling rate is tracked automatically in a range from 40 to 70 Hz . Alternatively, a fixed sampling rate of 50 Hz or 60 Hz can be set.

- Stage power monitored:

Monitoring of the stage power can be activated or deactivated in this submenu.

Functional principle:
Each time a capacitor stage is switched on, a check is performed to determine whether a change of current takes place in the main current transformer. If this is not the case, the stage is marked with an " X " in the Start menu window. This may be for any of the following reasons and needs to be checked:

- Capacitor faulty
- Fuse faulty
- The Reset menu item offers various methods of resetting the configured controller parameters. The configurable parameters are reset to the default settings.
This has the advantage that all configured parameters are deleted simultaneously and the controller restarts with the default settings.
Perform reset:
Extras menu, Reset menu item
Press $\boldsymbol{\lambda}=$ Reset flashes
Press $\boldsymbol{\lambda}$ and ${ }^{[3]}$ simultaneously = done is displayed
After about 2 seconds, Reset is displayed again

NOTE

The reset process can be interrupted by pressing \boldsymbol{D}.

- Contrast setting:

The contrast settings of the LCD can be changed in this submenu. Setting range: 0 to 10 .

- Brightness setting:

The LCD brightness can be changed in this submenu.
Setting range: 0 to 9 .

- Dimmer brightness:

The LCD dimming can be changed in this submenu. Setting range: 0 to 9. The brightness is reduced after a set time of 15 minutes.

- Light load limit:

In this submenu, the light load detection limit can be changed to either 15 mA or 50 mA .

- Light load delay:

The light load detection delay time can be changed in this submenu. It can be varied between 1 and 60 minutes.

- Fan relay:

In this submenu, you can set the last stage output (stage 6 or 12, depending on the device version) as a compensation stage output or fan output.

NOTE

The stage outputs are optocoupler outputs. If direct fan control is required, install an external switch relay (power supply input max. 30 VDC , max. 35 mA , switching capacity output 250 VAC / 2A, floating).

- Switching threshold fan on:

In this submenu, you can change the switch-on threshold for the fan output. It can be varied between $0^{\circ} \mathrm{C}$ and $60^{\circ} \mathrm{C}$.

- Switching threshold fan off:

In this submenu, you can change the switch-off threshold for the fan output. It can be varied between $0^{\circ} \mathrm{C}$ and $60^{\circ} \mathrm{C}$.

NOTE

The fan has a run-on time of 30 minutes to prevent unnecessarily frequent switching.

- Switching threshold system off:

In this submenu, the switching threshold for switching off the system can be varied It can be varied between $0^{\circ} \mathrm{C}$ and $60^{\circ} \mathrm{C}$.

- Switching threshold system on:

In this submenu, the switching threshold for switching on the system can be varied It can be varied between $0^{\circ} \mathrm{C}$ and $60^{\circ} \mathrm{C}$.

- Bus mode:

In this submenu, the bus protocol of the device can be set. to KBR eBus or Modbus RTU.
The KBR eBus setting is used for testing purposes.
If Modbus RTU is selected, you can set the transmission parameters here. The supported transmission parameters are:
Baud rate (baud) 4800, 9600, 19200, 38400
Parity even, odd, none
Data bits
8
Stop bits $\quad 1$ for even and odd, 2 for Parity none

- Learning mode:

In this submenu, you can show or hide the submenu item "Learning mode activate" (in the Commissioning menu).

- Touch tones:

In this submenu, you can turn the key sounds (which sound if a sensor button is pushed) on or off.

- EEP delete:

For production purposes only.

9 Notes on troubleshooting

Undercompensation, not enough stages are switched on:
Check controller for error messages If the target $\cos \varphi$ is set to 0.8 capacitive, the capacitors need to start being switched on. If the system is not over-dimensioned, almost all stages need to be switched on.

Check the system's main fuse and group fuses. All values can be found in the enclosed documents.

The group fuses must display at least 1.7 times the value of the capacitor power.
If the fuses blow despite being correctly selected, the groups must be checked individually for excessive current input and defective contactors.

Undercompensation, all stages are switched on:
The existing system is insufficiently dimensioned (e.g. due to new inductive consumers). Please contact your local representative (enlarge your system). The number of the service hotline is given on the cover of these operating instructions.

Overcompensation, too many stages are switched on:
Check the controller settings (target $\cos \varphi$ capacitive?).
Is the transformer installed in the wrong position?
Controller switches too often, in particular during light load times (at the weekend, at night):

Check the transformer ratio configuration. If necessary, (manually) switch a small stage on permanently.

NOTE

Please call your local representative if you are unable to find the cause of the error.
The phone number is given on the cover of these operating instructions.

10 System and safety device maintenance

In order to ensure that your system functions properly and has a long service life, perform the following checks after commissioning and then on an annual basis.

- Check and re-tighten all connections. Screw connections may become loose at the beginning due to thermal stress.
- Check fuses, safety devices and switching equipment. Contactors are wearing parts. If the contactor is intact, switching must take place without excessive sparking.
- Check the control performance in automatic mode.
- Check the cooling air setting (fans, temperature monitoring function):
- Check that the controller temperature relay switches the fans on at $28^{\circ} \mathrm{C}$.
- Check that the temperature monitoring switches the system off via controller at $48^{\circ} \mathrm{C}$.
- Clean the filter mats if necessary, depending on how dirty they are.
- Perform a visual inspection of the capacitors.
- Examine the current input and capacitor terminal voltage once every three months.
- Check the reactive energy consumption on the basis of the electricity bill.

NOTE

The current consumption and the temperature of these systems must be checked regularly so that overloading of the capacitors can be detected at an early stage. Excessive current consumption can be caused by an increasing proportion of harmonics or by faulty capacitors.

11 Technical data

11.1 Measuring and display values

Voltage	RMS value of a measuring interval	Phase - 0 or phase - phase, depending on configuration
	Units	[V; kV;] display is switched automatically
	Display range	0.00 kV to 99.9 kV
	Measuring range	30-690 VAC (max. permissible value: 790 VAC)
Current (apparent current)	RMS value of a measuring interval	Actual value per phase
	Units	[A; kA] display is switched automatically
	Display range	0.00 A to 999 kA
	Measuring range	0.015-5 A (max. permissible value: 6 A)
Frequency	Network frequency measurement	$\mathrm{f}_{\text {Network }}$
	Units	[Hz]
	Measuring range	41-70 Hz
Apparent power	Calculation	$\mathrm{S}_{\text {tot }}$ 3-phase
	Units	kVA
	Display range	0.0 VA to 9999.9 kVA
Active power	Calculation	$\mathrm{P}_{\text {total }}$ 3-phase
	Units	kW
	Display range	0.0 W to 9999.9 kW
Reactive power	Calculation —> ind. and cap.	$\mathrm{Q}_{\text {total }} \mathrm{Q}_{\text {miss }}$; distinction between ind./cap.
	Units	kvar
	Display range	0.0 var to 9999.9 kvar
Power factor	Calculation —> ind. and cap.	CosPhi; distinction between ind./cap. CosPhi in display
	Display range	CosPhi 0.10 ind. $<-1 \longrightarrow>0.10$ cap.
Temperature	Measuring range	$-10^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$
Harmonics	Distortion factor (THD) for voltage	Voltage: THD-U
	Partial distortion factors	$3^{\text {rd }} ; 5^{\text {th }} ; 7^{\text {th. }} ; 9^{\text {th }} ; 11^{\text {th }} ; 13^{\text {th }} ;$ voltage harmonic
	Units	[\%]
	Measuring range	0.00\% to 100\%

11.2 Measuring accuracy

Current	$\pm 0.5 \% / \pm 1$ digit (for 0.1 to 5 A)
Voltage	$\pm 0.5 \% / \pm 1$ digit
Power	$\pm 1 \% / \pm 1$ digit
Power factor	$\pm 1 \% / \pm 1$ digit
Frequency	$\pm 0.1 \% / \pm 1$ digit
Temperature	$\pm 2{ }^{\circ} \mathrm{C} / \pm 1$ digit

11.3 Measuring principle

Sampling	128 readings per period
A/D converter	12 bit
Measurement of U and I	Simultaneous recording of U and I read- ings;
Measuring cycle	20 ms
Harmonics calculation	FFT with 128 points over one period
Frequency measurement	Consumption: Voltage measurement between phase Lx - N / Ly)
Temperature sensor	Analog measurement with PT 1000

11.4 Device memory

Data storage	16 kB RAM (volatile)
Program and parameter memory	128 kB flash
Extreme values (max.)	No compensation power $\mathrm{Q}_{\max }$

11.5 Other limits:

Limit violations:	
Harmonics	Acquisition time approx. 100 ms
Overvoltage switch-off:	Acquisition time approx. 40 ms
Zero-voltage switch-off:	Acquisition time approx. 40 ms (for measuring voltage)

11.6 Power supply

Power supply	100 to $240 \mathrm{~V}+/-10 \% \mathrm{DC} / 50 / 60 \mathrm{HZ}$

11.7 Hardware inputs and outputs

11.7.1 Hardware inputs

Voltage measuring input	$\mathrm{U}_{\text {PH-NPH-N }}$ or $\mathrm{U}_{\text {PH-PH }}$	30-690 VAC (max. permissible value: 790 VAC)
	Input impedance	750 kOhm
	Measuring range	1 measuring range, measuring voltage transformer is configurable
Current measuring input	$\mathrm{I}_{\mathrm{L} 1}$ or $\mathrm{I}_{\mathrm{L} 2}$ or $\mathrm{L}_{\mathrm{L} 3}$	0.015-5 A (max. permissible value: 6 A)
	Power consumption	0.3 VA at $6 \mathrm{~A}, 0.05 \mathrm{VA}$ at 1.2 A
	Measuring range	1 measuring range, current transformer is configurable
Analog input	PT 1000 measurement sensor	Temperature measurement $-10^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}$, $+/-2{ }^{\circ} \mathrm{C}$ max. cable length <3 meters

11.7.2 Hardware outputs

Alarm relay	Switching capacity	250 V (AC) / 2 A floating
Optocoupler output	Switching capacity	approx. 5 to 30 VDC, max. 35 mA, external supply
Serial interface	BUS	RS485 for connection to the Modbus
	Protocol, baud rate	Modbus RTU, bud rate 4800, 9600, 19200, 38400 Parity none, even, odd
	Addressing	Modbus: manual setting on the device, address 1 to 247

11.8 Electrical connection

Connection elements		Plug-in terminals
Permissible cross-section of the connection lines	$2.5 \mathrm{~mm}^{2}$	
Measurement voltage inputs	Fuse protection	max. 6 A
Measuring current input	Fuse protection	NONE!!! Always short-circuit current trans- former terminals k and I before opening the circuit!
Input control voltage	Fuse protection	max. 6 A
BUS connection	Connection material	To ensure proper operation, only use shielded twisted-pair cables; e.g. I-Y(St)Y EIB $2 \times 2 \times 0.8$
Relay output	Fuse protection	max 2 A medium time-lag
Transformer connection	Connections	See wiring diagram
Interface connection	Pins for BUS connec- tion via RS-485	 Terminal 91 A Terminal 92 B

11.9 Mechanical data

Switchboard installation	Housing dimensions	$144 \times 144 \times 60 \mathrm{~mm}(\mathrm{H} \times \mathrm{W} \times \mathrm{D})$,
	Installation cut-out	$138 \times 138 \mathrm{~mm}$
	Weight	Approx. 650 g

11.10 Standards and miscellaneous

Ambient conditions	Standards	DIN EN 60721-3-3:1995-09 + DIN EN 60721-3-3/A2:1997-07; 3K5+3Z11; (IEC721-3-3;3K5+3Z11)
	Operating temperature	$-5^{\circ} \mathrm{C}-.+55^{\circ} \mathrm{C}$
	Humidity	5\%-95\% non-condensing
	Storage temperature	$-25^{\circ} \mathrm{C}$ to. $+70^{\circ} \mathrm{C}$
	Operating altitude	up to max. 2000 m above sea level
Electrical safety	Standards	DIN EN 61010-1:2011-07; DIN EN 61010-2-030:2011-07
	Protection class	I
	Overvoltage category, measurement category	III
Protection type	Standards	DIN EN 60529:2014-09
	Front	IP 51 (with optional front door max. IP 54)
	Terminals	IP 20
EMC	Standards	DIN EN 61000-6-2:2006-03 + amendment 1:2011-06 DIN EN 61000-6-3:2011-09 + amendment 1:2012-11

12 Selection of cables and fuses

C power (400 V) Q (kvar)	Current consumption I (A) per phase	Supply cable $\mathrm{Cu}\left(\mathrm{mm}^{2}\right)$	Fuse (slow-blow) $3 \times I(A)$
0.5	0.72	$4 \mathrm{x} \quad 1.5$	10
1	1.44	$4 \mathrm{x} \quad 1.5$	10
1.5	2.16	$4 \mathrm{x} \quad 1.5$	10
2	2.88	$4 \mathrm{x} \quad 1.5$	10
2.5	3.60	$4 \mathrm{x} \quad 1.5$	10
3	4.32	$4 \mathrm{x} \quad 1.5$	10
4	5.76	$4 \mathrm{x} \quad 1.5$	10
5	7.20	$4 \mathrm{x} \quad 2.5$	16
6	8.64	$4 \mathrm{x} \quad 2.5$	16
7.5	10.80	$4 \mathrm{x} \quad 2.5$	16
10	14.40	$4 \mathrm{x} \quad 2.5$	25
12.5	18.00	$4 \mathrm{x} \quad 6$	35
15	21.60	4×10	35
16.7	24.00	4×10	35
20	28.80	4×10	50
25	36.00	4×16	63
30	43.20	4×16	80
33.3	48.00	4×16	80
35	50.40	4×25	80
40	57.60	4×25	100
45	64.80	$3 \times 35 / 16$	100
50	72.00	$3 \times 50 / 25$	125
60	86.40	$3 \times 50 / 25$	125
70	100.80	$3 \times 70 / 35$	160
75	108.00	$3 \times 70 / 35$	160
80	115.10	$3 \times 95 / 50$	200
90	129.60	$3 \times 95 / 50$	200
100	144.00	$3 \times 95 / 50$	250
120	172.80	$3 \times 120 / 70$	250
125	180.00	$3 x \quad 120 / 70$	250
150	216.00	$3 \times 150 / 70$	315
180	259.20	$3 \times 240 / 120$	400
200	288.00	$3 \times 240 / 120$	400
250	360.00	$2 \times 3 \times 150 / 70$	500
300	432.00	$2 \times 3 \times 185 / 95$	630
350	504.00	$2 \times 3 \times 240 / 120$	2×400
400	576.00	$2 \times 3 \times 240 / 120$	2×400
450	648.00	$4 \times 3 \times 120 / 70$	2×500
500	720.00	$4 \times 3 \times 150 / 70$	2×500

13 Data point description for the Modbus protocol

multicomp F144-3

13.1 Modbus commands supported
13.2 Data formats
13.3 Interface parameters
13.4 Device settings
13.5 Data points
13.6 Device information

13.1 Modbus commands supported

0×04	Read input registers
$0 \times 2 \mathrm{~B}$	Read device identification

The multicomp F144-3 does not support broadcast commands. All Modbus commands described are device-specific commands.

13.2 Data formats

(unsigned) short: 0×1234

Address	+0	+1		
Contents	0×12	0×34		

Rule for byte sequence: MSB before LSB
(unsigned) long: 0×12345678

Address	+0	+1	+2	+3
Contents	0×12	0×34	0×56	0×78

Rule for byte sequence: MSB before LSB
float:

Format	Complies with the IEEE 754 standard
Representation	4 bytes
Accuracy	24 bits ($>$ represent >7 decimal points)
Composition	24 -bit mantissa; 8-bit exponent
Mantissa	24 bits (M) + 1 bit (S)
Exponent	The MSB of the mantissa is always $1=>$ it is not saved separately! $S=$ sign of the mantissa: $S=1>$ negative number; $S=0>$ positive number
Exponent	8 bits ($0-255$); is saved relative to 127, i.e. the current value of the exponent is calculated by subtracting the number 127 from the saved value. Curr. exp. $=$ saved exp value. -127 => range from 128 to -127!

Example 1: -12.5 decimal $=0 x C 1480000$ hex
M: 24 bit-mantissa
E: Exponent with offset of 127
S : Sign for mantissa ($\mathrm{S}=1$ neg.; $\mathrm{S}=0$ pos.)

Address	+0	+1	+2	+3
Format	SEEEEEEE	EMMMMMMM	MMMMMMMM	MMMMMMMM
Binary	11000001	01001000	00000000	00000000
Hex	C1	48	00	00

The byte sequence is defined as follows:
The byte with the " S sign bit" is transmitted over the bus as the first byte.
The sequence of the float bytes of the bus can be reversed, if necessary, using the device parameter 0xD02C (see table 1).
The register value 0xD02C in this case means:

- with 1 -> sign bit S in $1^{\text {st }}$ byte (sequence as defined)
- with $0->$ sign bit S in $4^{\text {th }}$ byte (sequence reversed)

The following information can be derived from this:
The sign bit is $1=>$ negative mantissa
The value of the exponent amounts to 10000010 bin or 130 dec .
This results in an exponent value of: 130-127=3
The mantissa has the following value: 10010000000000000000000
The decimal point can be found at the left end of the mantissa, preceded by a 1. This position does not appear in the hexadecimal numeric notation. If you add 1 and set the decimal point at the beginning of the mantissa, the following value is obtained:

1.10010000000000000000000

Now, the mantissa needs to be adjusted to the exponent. A negative exponent shifts the decimal point to the left, a positive exponent shifts it to the right. Since the exponent is 3 , this is represented as: 1100.10000000000000000000 The number obtained corresponds to the binary floating-point number. Binary digits to the left of the decimal point result in values >1. In this example, 1100 bin results in the number $12 \mathrm{dec} .\{(1 \times 23)+(1 \times 22)+(0 \times 21)+(0 \times 20)\}$
Binary digits to the right of the decimal point result in values <1. In this example, .100....... bin results in the number 0.5 dec. $\{(1 \times 2-1)+(0 \times 2-2)+(0 \times 2-3)+$ (0x2-4)\}
By adding the individual values, 12.5 is obtained. As the sign bit was set, it is a negative value, -12.5 . The hexadecimal number 0xC1480000 thus corresponds to -12.5.

Example 2: -12.55155 decimal $=0 x C 148$ D325 hex

Address	+0	+1	+2	+3
Format	SEEEEEEE	EMMMMMMM	MMMMMMMM	MMMMMMMM
Binary	11000001	01001000	11010011	00100101
Hex	C1	48	D3	25

Example 3: 45.354 decimal $=0 \times 42356$ A7F hex

Address	+0	+1	+2	+3
Format	SEEEEEEE	EMMMMMMM	MMMMMMMM	MMMMMMMM
Binary	01000010	00110101	01101010	01111111
Hex	42	35	AA	7F

Exponent: 10000100 bin $=132 \mathrm{dec}$.

$$
>\text { Exp. }=132-127=5
$$

Mantissa: $\mathrm{S}=0$
$>$ Sign=positive
01101010110101001111111 bin
Decimal point added to the first position of the mantissa
> 01101010110101001111111
Leading 1 in front of the decimal point
$>1.01101010110101001111111$
Taking the exponent into account (=5)
$>101101.010110101001111111$
to the left of the decimal point: 101101 bin $=25+23+22+20=$
45 dec.
To the right of the decimal point: $\quad 010110101001111111 \mathrm{bin}=$
$2-2+2-4+2-5+2-7+2-9+2-12+2-13+2-14+2-15+2-16+2-17+$
$2-18=0.3540001 \mathrm{dec}$
Final result: +45.03540001 dec.

13.3 Interface parameters

Baud rate (baud)	Parity	Data bits	Stop bits
$4800,9600,19200$, 38400	even, odd, none	8	2 for parity none otherwise 1

The maximum data length of a Modbus transmission is 256 bytes. This results in a user data length of 253 bytes.

The number of data bits and stop bits is defined in the Modbus definition. Baud rates of less than 4800 baud are possible by definition, but not implemented at present. The interface parameters can only be configured on the device (not via bus).

13.4 Device settings

The settings are read with the 0×04 command (read input registers) as shown in Table 1. Writing is not possible at present.

Address	Words	Description	Value	Format
0xD002	2	Primary transformer measuring voltage	0-999999 V	float
0xD004	2	Secondary transformer measuring voltage	0-999 V	float
0xD006	2	Primary transformer measuring current	0-999999 A	float
0xD008	2	Secondary transformer measuring current	$1 \mathrm{~A} / 5 \mathrm{~A}$	float
0xD00 A	2	Target CosPhi 1	$-1.0-+1.0$	float
0xD00C	2			float
0xD00E	2	Target CosPhi for energy recovery (fixed setting)	$-1.0-+1.0$	float
0xD010	2	Target CosPhi for message "PFC too small"	$-1.0-+1.0$	float
0xD012	2	Connected phase voltage measurement	$\begin{aligned} & \text { 0=L1N // 1=L2N } \\ & / / 2=\mathrm{L} 3 \mathrm{~N} / / 4=\mathrm{L} 12 \\ & / / 5=\mathrm{L} 23 / / 6=\mathrm{L} 31 \end{aligned}$	unsigned long
0xD014	2	Connected phase current measurement	$\begin{aligned} & 0=\mathrm{L} 1 / / 1=\mathrm{L} 2 / / \\ & 2=\mathrm{L} 3 / / 3=-\mathrm{L} 1 / / \\ & 4=-\mathrm{L} 2 / / 5=-\mathrm{L} 3 \end{aligned}$	unsigned long
0xD016	2			
0xD018	2			
0xD01a	2			
0xD01c	2			
0xD01e	2	General		

	Address	Words	Description	Value	Format
	0xD020	2	Byte sequence for float on the Modbus ($1=$ as defined $/ / 0=$ reversed)	0-1	unsigned long
	0xD022	2	Frequency correction ($0=$ Auto $/ / 1=50$ $\mathrm{Hz} / / 2=60 \mathrm{~Hz}$)	0-2	unsigned long
	0xD024	2	Stage monitoring ($0=$ No, $1=\mathrm{Yes}$)	0/1	unsigned long
	0xD026	2	Temperature measurement (1=Yes // $0=\mathrm{No}$)	0/1	unsigned long
	0xD028	2	Fan relay (1 =available // 0=not available)	0/1	unsigned long
	0xD02a	2	Temperature $\left[0.1^{\circ} \mathrm{C}\right]$ that triggers the fan when the threshold is exceeded	0-700	unsigned long
	0xD02c	2	Temperature $\left[0.1^{\circ} \mathrm{C}\right]$ that causes the fan to switch off when the value falls below the threshold	0-700	unsigned long
	0xD02e	2	Temperature $\left[0.1^{\circ} \mathrm{C}\right]$ that triggers the stages when the value falls below the threshold	0-700	unsigned long
	0xD030	2	Temperature $\left[0.1^{\circ} \mathrm{C}\right.$] that causes the stages to switch off when the threshold is exceeded	0-700	unsigned long
	0xD032	2			
	0xD034	2			
	0xD036	2			
	0xD038	2			
	0xD03A	2			
	0xD03C	2			
	0xD03E	2			
	0xD040	2	Switching performance		
	0xD042	2	Percentage of smallest available stage before activation	70-150	unsigned long
	0xD044	2	Percentage of smallest available stage before stages can be switched off	70-150	unsigned long
	0xD046	2	Time before message "PFC too small" is displayed [s]	3-3000	unsigned long
	0xD048	2	Idle time after compensation [ms]	20-9999	unsigned long
	0xD04A	2			unsigned long
	0xD04C	2	Switching interval [ms]	50-9999	unsigned long

Address	Words	Description	Value	Format
0xD04E	2			unsigned long
0xD050	2	max. switching capacity per pulse	0-9999	unsigned long
0xD052	2	Attenuation coefficient for voltage	0-9	unsigned long
0xD054	2	Attenuation coefficient for current	0-9	unsigned long
0xD056	2	Attenuation coefficient $\mathrm{Q}_{\text {miss }}$	0-9	unsigned long
0xD058	2			
0xd05A	2			
0xD05C	2			
0xD05E	2			
0xD060	2	Extras		
0xD062	2			
0xD064	2	Light load limit [A]	0.015 or 0.05	float
0xD066	2	Time until light load switch-off in minutes	1-60	unsigned long
0xD068	2			unsigned long
0xD06A	2	Voltage harmonic limit [\%]	0-10	unsigned long
0xD06C	2			unsigned long
0xD06E	2	Modbus address	1-247	unsigned long
0xD070	2	Modbus parameters $\begin{aligned} & (0=\mathrm{e} 4800 / / 1=04800 / / 2=n 4800 / / \\ & 3=\mathrm{e} 9600 / / 4=09600 / / 5=n 9600 / / \\ & 6=\mathrm{e} 19200 / / 7=019200 / / 8=n 19200 / / \\ & 9=\mathrm{e} 38400 / / 10=038400 / / 11=n 38400) \end{aligned}$	0-11	unsigned long
0xD072	2			
0xD074	2			
0xD076	2			
0xD078	2			
0xD07A	2			
0xD07C	2			

	Address	Words	Description	Value	Format
	0xD07E	2	Stage parameters		
	0xD080	2	Base index for the following stage parameters (addresses 0xD080 to 0xD08E)	0 (= stage 1)	unsigned long
	0xD082	2	Mode	$0=\text { Off } / / 1=$ $\text { Auto } 2=0 n$	unsigned long
	0xD084	2	Stage power [0.1 kvar]	0-9999	unsigned long
	0xD086	2	Discharge time [ms]	20-9999	unsigned long
	0xD088	2	Operating cycles	0-999999	unsigned long
	0xD08A	2		0	unsigned long
	0xD08C	2		0	unsigned long
	0xD08E	2		0	unsigned long
	0xD090	2	Base index for the following stage parameters (addresses 0xD090 to 0xD09E)	1 (= stage 2)	unsigned long
	0xD09E	2		0	unsigned long
	0xD0A0	2	Base index for the following stage parameters (addresses 0xD0A0 to 0xDOAE)	2 (= stage 3)	unsigned long
	0xDOAE	2		0	unsigned long
	0xDOB0	2	Base index for the following stage parameters (addresses 0xD0B0 to 0xD0BE)	3 (= stage 4)	unsigned long
	0xDOBE	2		0	unsigned long

Address	Words	Description	Value	Format
0xD0C0	2	Base index for the following stage parameters (addresses 0xD0C0 to 0xD0CE)	4 (= stage 5)	unsigned long
0xD0CE	2		0	unsigned long
0xD0D0	2	Base index for the following stage parameters (addresses 0xD0D0 to 0xD0DE)	5 (= stage 6)	unsigned long
0xD0DE	2		0	unsigned long
0xD0E0	2	Base index for the following stage parameters (addresses 0xD0E0 to 0xD0EE)	6 (= stage 7)	unsigned long
0xD0EE	2		0	unsigned long
0xD0F0	2	Base index for the following stage parameters (addresses 0xD0F0 to 0xD0FE)	7 (= stage 8)	unsigned long
0xD0FE	2		0	unsigned long
0xD100	2	Base index for the following stage parameters (addresses 0xD100 to 0xD10E)	8 (= stage 9)	unsigned long
0xD10E	2		0	unsigned long
0xD110	2	Base index for the following stage parameters (addresses 0xD110 to 0xD11E)	9 (= stage 10)	unsigned long

\(\left.$$
\begin{array}{|l|l|l|l|l|}\hline \text { Address } & \text { Words } & \text { Description } & \text { Value } & \text { Format } \\
\hline \text { 0xD11E } & 2 & & 0 & \begin{array}{l}\text { unsigned } \\
\text { long }\end{array} \\
\hline & & & \begin{array}{l}\text { Base index for the following stage } \\
\text { parameters } \\
\text { (addresses 0xD120 to 0xD12E) }\end{array} & 10 \text { (= stage 11) }\end{array}
$$ \begin{array}{l}unsigned

long\end{array}\right] |\)| 0xD120 |
| :--- |
| 2 |

Request:

0104 D0 010002 xx xx
in which

01	Device address
04	Command
D0 01	Read from register 0xD002 "Measuring voltage primary trans- former" (in accordance with the Modbus definition, the required address must be set to -1 in the request telex)
0002	Read 2 registers, i.e. read 1 data point
$x x$ xx	CRC code

Response:

010404 xx xx xx xx yy yy
in which

01	Device address	
04	Command	
04	4 data bytes	400 V
$x x$ xx xx xx	Measuring voltage primary transformer	
yy yy	CRC code	

13.5 Data points

Address	Words	Description	Units	Format
0x0002	2	Voltage	V	float
0x0004	2	Current	A	float
0x0006	2	Network frequency	Hz	float
0x0008	2	Current CosPhi		float
0x000a	2	Active power	W	float
0x000c	2	Fundamental reactive power	var	float
0x000e	2	No compensation power	var	float
0x0010	2	Apparent power	VA	float
0×0012	2	THD	\%	float
0x0014	2	Temperature	${ }^{\circ} \mathrm{C}$	float
0x0016	2	Overtemperature switch-off		float
0x0018	2	Voltage 3rd harmonic	\%	float
0x001a	2	Voltage $5^{\text {th }}$ harmonic	\%	float
0x001c	2	Voltage $7^{\text {th }}$ harmonic	\%	float
0x001e	2	Voltage 9 ${ }^{\text {th }}$ harmonic	\%	float
0x0020	2	Voltage 11 ${ }^{\text {th }}$ harmonic	\%	float
0x0022	2	Voltage 13th harmonic	\%	float
0x0024	2	Maximum missing compensation power	var	float
0x0026	2	Relay states (12 bit: bit $0=$ stage 1 - bit 11 = stage $12 / /$ bit $13=$ error message)	bitwise	unsigned long
0x0028	2	Messages (bit coded)		unsigned long
0x002a	2	Error messages (bit coded)		unsigned long

Messages:	Bit 00 set:	No stage power
(display)	Bit 01 set:	System temperature switch-off
	Bit 02 set:	No measuring current
	Bit 03 set:	No measuring voltage
	Bit 04 set:	Light load operation
	Bit 05 set:	Voltage harmonics limit reached
	Bit 06 set:	Operating cycle limit reached
	Bit 07 set:	PFC too small
Error messages:	Bit 00 set:	No stage power
(relay set)	Bit 01 set:	System temperature switch-off
	Bit 02 set:	No measuring current
	Bit 03 set:	No measuring voltage
	Bit 04 set:	Light load operation
	Bit 05 set:	Voltage harmonics limit reached
	Bit 06 set:	Operating cycle limit reached
	Bit 07 set:	PFC too small

Example Modbus RTU
Request:
010400 1F 00324019
where

01	Device address
04	Command
0001	Read voltage from register 0x0002 (in accordance with Modbus definition, the required address must be set to -1 in the request telex)
0026	Read 38 registers, i.e. read 19 data points
4019	CRC code

Response:

010464 xx xx
xx xx

XX xx xx xx yy yy
where

01	Device address	
04	Command	
4C	76 data bytes	
xx xx xx xx	Voltage	xx V
xx xx xx xx	Current	xx A
xx xx xx xx	Network frequency	xx Hz
xx xx xx xx	Current CosPhi	xx
xx xx xx xx	Active power	xx W
	Fundamental reactive power	xx var
	No compensation power	xx var
	Apparent power	xx VA
xx xx xx xx	THD	xx \%
	Temperature	$\mathrm{xx}^{\circ} \mathrm{C}$
xx xx xx xx	Overtemperature switch-off	XX
	Voltage $3^{\text {rd }}$ harmonic	xx \%
	Voltage $5^{\text {th }}$ harmonic	xx \%
	Voltage $7^{\text {th }}$ harmonic	xx \%
	Voltage 9th harmonic	xx \%
xx xx xx xx	Voltage 11 ${ }^{\text {th }}$ harmonic	xx \%

$x x x x x x x x$	Voltage $13^{\text {th }}$ harmonic	$x x \%$
$x x x x x x x x$	Maximum missing compensation power	$x x$ var
$x x x x x x x x$	Relay states (12 bit: bit $0=$ stage 1 - bit $11=$ stage $12 / /$ bit $13=$ error message)	$x x$
$y y y y$	CRC code	

13.6 Device information

The device information is read via the command 0x2B (Read Device Identification)

Information about the manufacturer, device code and device version is read in the process. The device supplies the "Basic Device Identification". "Regular" and "Extended Device Identification" are optional according to the Modbus definition.

Example Modbus RTU

Request:
01 2B 0E 01007077
in which

01	Device address
2B	Command
$0 E$	MEl type according to the Modbus definition always 0x0E
01	Device ID code for "Basic Device Identification" (see Modbus definition)
00	Object ID -> in our example manufacturer name, product name and version
7077	CRC code

Response:
01 2B 0E 01010000030008 4B 42522047 6D 62480112 4D 75 6C 7469 6D
6573732043 6F 6D 66
6F 727402092032 2E 303072313030 yy yy

01	Device address
2B	Command
OE	MEI type (see Modbus definition)
01	"Basic identification" (see Modbus definition)
01	"Conformity level" (see Modbus definition)
00	No further information follows (no additional telex required)
00	Next object ID
03	Number of objects
00	Object ID 00
08	Length of the text of ID 00
$\begin{aligned} & \text { 4B } 42522047 \text { 6D } 62 \\ & \text { 48 } \end{aligned}$	"KBR GmbH"
01	Object ID 01
12	Text length of ID 01
6D 75 6C 746963 6F 6D 702046313434 1D 332020	"multicomp F144-3"
02	Object ID 02
09	Text length of ID 02
$\begin{aligned} & 2032 \text { 2E } 30307231 \\ & 3030 \end{aligned}$	"2.00r100"
yy yy	CRC code

\qquad

KBR Kompensationsanlagenbau GmbH

Am Kiefernschlag 7	T +49 (0) 9122 6373-0 D-91126 Schwabach Germany	F +49 (0) 9122 6373-83
El info @ kbr.de		

