

Bedienungsanleitung

Power Quality Netzanalysator multimess F144-PQ

LEISTU	NG 2/7			•1•
		L2	L3	TOTAL
	0.000	0.000	0.000	0.000
Q MARI	0.000	0.000	0.000	0.000
Рм	0.000	0.000	0.000	0.000
D MAR	0.000	0.000	0.000	0.000
PF	0.000	0.000	0.000	0.000
one nhi	0.000	0.000	0.000	0.000

System | deutsch

In unserem Downloadcenter finden Sie zu KBR Geräten die passende Anleitung.

https://www.kbr.de/download/ bedienungsanleitungen/

Die Firma **KBR Kompensationsanlagenbau GmbH** übernimmt keine Haftung für Schäden oder Verluste jeglicher Art, die aus Druckfehlern oder Änderungen in dieser Bedienungsanleitung entstehen.

Ebenso wird von der Firma **KBR Kompensationsanlagenbau GmbH** keine Haftung für Schäden und Verluste jeglicher Art übernommen, die sich aus fehlerhaften Geräten oder durch Geräte, die vom Anwender geändert wurden, ergeben.

Copyright 2024 by **KBR Kompensationsanlagenbau GmbH** Änderungen vorbehalten.

Inhalt		
1	Benutzerführung	6
1.1	Zielgruppe	6
1.2	Aufbau der Warnhinweise	6
1.3	Hinweise	7
1.4	Weitere Symbole	7
1.5	Mitgeltende Dokumente	7
1.6	Aufbewahrung	7
2	Lieferumfang/Bestellmerkmale	8
3	Sicherheitshinweise	10
3.1	Bedeutung der verwendeten Symbole	10
3.2	Angaben zum Aufstellungsort und Montage des multimess F144-PQ	11
4	Bestimmungsgemäßer Einsatz	11
5.	Technische Daten	12
5.1	multimess F144-PQ Beschreibung	12
5.2	Technische Daten	14
5.2.1	Abmessungen	15
5.2.2	Spannungsversorgung	15
5.2.3	Umgebungsbedingungen – Elektrische Sicherheit	16
5.2.4	Spannungs-Messeingänge	17
5.2.5	Stromeingänge	19
5.2.6	Differenzstromeingang	20
5.2.7	Binäreingänge – Binärausgänge	20
5.2.8	Temperatureingang	21
5.2.9	Erdungsanschluss	21
5.2.10	Datenspeicher	22
5.2.11	Kommunikationsprotokolle	22
5.2.12	Zeitsynchronisations- protokoll	22
5.2.13	Kommunikationsschnittstellen	22
5.3	Mechanischer Aufbau	24
5.3.1	Batterie	25
5.4	Klemmenbezeichnungen multimess F144-PQ	26
5.4.1	Montage	29
5.5	Versorgungsspannungsanschluss	30
5.6	Netzanschluss multimess F144-PQ	32
5.6.3	4-Leiter Anschluss, 1-Phasig	36
5.6.4	3-Phasen / 3-Leiter Anschluss	37
5.6.4.1	Anschluss an Sekundärwandlern	37

5.7	Weitere Anschlüsse	39
5.7.1	RS232 / RS485 Schnittstellen	
5.7.1.1	Anschluss und Terminierung RS232/RS485 Schnittstelle	39
5.7.1.2	Anschluss des multimess F144-PQ als Master an einem Bus	41
5.7.2	PT100/PT1000/KYT Temperatureingang	42
5.7.3	Differenzstromeingang (ab Firmware v2.2)	43
5.7.4	Binärausgänge	44
5.7.5	Binäreingänge	45
5.8	Messung / Funktionen	46
5.8.1	Permanente Aufzeichnung:	46
5.8.2	PQ-Ereignisse	47
5.8.3	Trigger Auslösung von Störschrieben	47
5.8.4	Speicherverwaltung	48
5.8.4.1	Speichererweiterung mit SD Karte	48
6.	Betrieb/Bedienung multimess F144-PQ	50
6.1	Erste Inbetriebnahme	50
6.2	Erste Inbetriebnahme – Assistent Bedienung	50
6.3	Erste Inbetriebnahme – Assistent	51
6.3.1	Assistent: Einstellung Sprache	51
6.3.2	Assistent: Einstellung PQ-Norm	51
6.3.3	Assistent: Einstellung Netzform	52
6.3.4	Assistent: Einstellung Netzfrequenz	52
6.3.5	Assistent: Einstellung Spannungswandler	53
6.3.6	Assistent: Einstellung Referenzspannung	53
6.3.7	Assistent: Einstellung Stromwandler	54
6.3.8	Assistent: Einstellung Wandlerfaktor Zubehör	54
6.3.10	Assistent: Einstellung Datum, Uhrzeit & Zeitzone	55
6.3.11	Assistent: Einstellung Kommunikationseinstellungen	56
6.3.12	Assistent: Einstellung Betriebsmodus	58
6.3.13	Assistent: Abschluss der Inbetriebnahme	59
6.4	Displayfunktionen	60
6.4.1	Nummerischer Display	60
6.4.3	Pop-Up-Anzeige für Meldungen zur Differenzstrommessung	68
6.4.3.1	Pop-Up-Anzeige Alarmmeldung	68
6.4.3.2	Pop-Up-Anzeige Warnmeldung	69
6.4.3.3	Pop-Up-Anzeige Fehlermeldung	70
6.5	Setup-Display	71
6.5.1	Parameter	71
6.5.2	Differenzstrom Messeingang / RCM	74

6.5.3	Zeiteinstellungen	76
6.5.3.1	Zeiteinstellung DCF77	76
6.5.3.2	Anschluss DCF77 Funkuhr	77
6.5.3.3	Zeiteinstellung Manuell	78
6.5.3.5	Zeiteinstellung NTP	80
6.5.3.6	Zeiteinstellung NMEA-ZDA	81
6.5.3.7	Zeiteinstellung NMEA-RMCA	81
6.5.3.8	Zeiteinstellung IRIG-B	82
6.5.3.9	Zeiteinstellung IEEE 1344	83
6.5.4	Grundeinstellung	84
6.5.5	Passwortsperre Gerätedisplay	85
6.5.6	Speicherverwaltung	86
6.5.7	CP/IP Schnittstelle einrichten	86
6.5.8	Display	
6.6	Displaysperre	
7	Modbus	89
7.1	Modbus Datenpunktliste	89
7.1.1	Modbus Einstellungen über Gerätedisplay	90
7.1.2	Modbus RTU	90
7.1.3	Modbus TCP	90
7.1.4	Setupeinstellungen Modbus über Software	91
7.1.5	Byte Reihenfolge	92
7.1.6	Modbus-Register-Reihenfolge	92
7.1.7	Datenbits	93
7.1.8	Datentypen	93
8.	Webserver	96
8.1	Parametrierung	96
8.2	Aufruf und REST-API	96
9.	Messdaten – Messverfahren multimess F144-PQ	97
10.	Wartung	
11.	Entsorgung	
12.	Produktgewährleistung	

1 Benutzerführung

1.1 Zielgruppe

Diese Bedienungsanleitung richtet sich an ausgebildetes Fachpersonal sowie geschultes und geprüftes Bedienpersonal. Der Inhalt dieser Bedienungsanleitung ist den mit der Montage und dem Betrieb des Systems beauftragten Personen zugänglich zu machen.

1.2 Aufbau der Warnhinweise

Warnhinweise sind wie folgt aufgebaut:

Art und Quelle der Gefahr!
Folgen bei Nichtbeachtung.SIGNALWORT!> Maßnahme, um die Gefahr zu vermeiden.

Abstufung der Warnhinweise

Warnhinweise unterscheiden sich nach Art der Gefahr wie folgt:

Warnt vor einer unmittelbar drohenden Gefahr, die zum Tod oder zu schweren Verletzungen führt, wenn sie nicht gemieden wird.	
<u>∧</u> WARNUNG!	Warnt vor einer möglicherweise gefährlichen Situation, die zum Tod oder schweren Verletzungen führt, wenn sie nicht gemieden wird.
	Warnt vor einer möglicherweise gefährlichen Situation, die zu mittelschweren oder leichten Verletzungen führt, wenn sie nicht gemieden wird

HINWEIS!	Warnt vor einer möglicherweise gefährlichen Situation, die zu Sach- oder Umweltschäden führt, wenn sie nicht gemieden wird
	gemieden wird.

	Verweist auf Vorgänge, bei denen die Gefahr von Verletzungen
	oder Sachschäden nichtbesteht, die es aber für den
	zuverlässigen Betrieb des Gerätes zu beachten gilt!

1.3 Hinweise

Tipps zum sachgerechten Umgang mit dem Gerät und Empfehlungen.

1.4 Weitere Symbole

1 Handlungsanweisungen

Aufbau der Handlungsanweisungen:

Anleitung zu einer Handlung.

- →Resultats Angabe falls erforderlich.
- 1 Listen

Aufbau nicht nummerierter Listen:

- 0 ⇒ Listenebenen 1
- ➡ Listenebene 2

Aufbau nummerierter Listen:

- 1) Listenebene 1
- 2) Listenebene 1
- 1. Listenebene 2
- 2. Listenebene 2

1.5 Mitgeltende Dokumente

Beachten Sie für die sichere und korrekte Verwendung der Anlage auch die zusätzlich mitgelieferten Dokumente sowie einschlägige Normen und Gesetze.

1.6 Aufbewahrung

Bewahren Sie die Bedienungsanleitung, inklusive der mitgeltenden Dokumente griffbereit in der Nähe des Systems auf.

2 Lieferumfang/Bestellmerkmale

2.1 Lieferumfang

- 0 ⇒ multimess F144-PQ
- 0 ⇒ Installationsanleitung
- 0 ⇒ Ethernet Kabel

2.2 Bestellmerkmale

Merkmale	Kennung
Power Quality Analysator und Störschreiber0 ⇒4 Spannungswandler, 4 Stromwandler0 ⇒DIN EN-50160 und IEC 61000-4-30 (Klasse A)0 ⇒8 Digitaleingänge0 ⇒4 Relais-Ausgänge	multimess F144-PQ
Versorgungsspannung (Arbeitsbereich) 0 ⇒ AC 90 V110 V264 V oder DC 100 V220 V350 V 0 ⇒ DC 18 V60 V70 V	H1 H2
Spannungseingänge 0 ⇒ 100V / 400V / 690V 10MOhm (CAT IV 300V)	
Stromeingänge 0 ⇒ 4 Stromeingänge für Messwandler 1 A/5 A (MB max. 10 A)	
Binäre Eingänge 0 ⇔ 8 programmierbare binäre Eingänge (AC/DC 48250V)	
Option IEC 61000-4-7 (40,96 kHz Abtastrate) 0 ⇒ Frequenzmessung von Spannung und Strom von 2 kHz bis 20 kHz nach IEC61000-4-7; Oszillograph mit 40,96 kHz Abtastrate	Option
Kommunikationsprotokoll 0 ⇔ Modbus RTU & TCP	РО
Option RCM 0 ⇔ Differenzstrommessung RCM (5. Strommesseingang)	Option
Betriebsanleitung 0 ⇒ Deutsch	

Mit einem Lizenzcode ist es möglich, die Option 2kHz bis 20kHz (40,96Hz Abtastrate für Oszilloskopbilder), sowie die RCM-Funktion aufzurüsten

Software WinPQ lite	Kennung
Zur Parametrierung des multimess F144-PQ sowie zum Auslesen	
alatzlizenz kestenfrei auf unserer Homenage im Dewnleadbe	
roich unter Apps Software-GSD-Dateion	
https://www.kbr.de/download/apps-software-asd-dateien/	
WinPO-Datenbank	Vonnung
	Kennung
Software WinPQ	WinPQ
Zur Parametrierung, Archivierung und Auswertung von multi-	
Grundfunktionen:	
→ 432-bit/64-bit Windows Programmoberfläche	
 ⇒ 4 Datenbank zur Speicherung der Messwerte ie Messstelle. 	
Datenzugriff über TCP/IP-Netzwerk	
↔ 4 Visualisierungsmöglichkeit für alle von einem multimess	
D9-PQ und multimess F144-PQ abrufbaren Messgrößen als	
Funktion der Zeit und als statistische Größe	
→ 4 automatisches Reporting nach EN50160; IEC61000-2-2 /	
2-4; IEEE519	
automatische Exportfunktionen	
(Comtrade, PQDIF, ASCII, PDF) und Störschriebversand	
eine weitere Arbeitsplatzlizenz für einen Windows Nutzer ist	
im Preis enthalten	
Lizenzen	
⇒ als Einzelplatzlizenz für 2 PQ Messgeräte	
(multimess D9-PQ, multimess F144-PQ)	
als Einzelplatzlizenz für 2 bis 10 PQ Messgerate	
(multimess D9-PQ, multimess F144-PQ)	
(multimess D0 D0 multimess E144 D0)	
(muumess D9-rQ, muumess Γ 144-rQ)	
(multimess D9-PO multimess F144-PO)	
Betriebsanleitung	Doutsch
bettebbathertung	Deutsch

Zusätze zu multimess F144-PQ	Kennung
SD-Speicherkarte extern; 4 Gigabyte Industriestandard	
DCF 77-Funkuhr	
GPS-Funkuhr – Navilog Set - RS485; Hutschiene GPS Empfänger, GPS Umsetzer 5m Anschlussleitung, Winkelhalterung Netzteil für GPS – Funkuhr - Hutschiene, 88-264 VAC/24 V, 10 W	

3 Sicherheitshinweise

- Bedienungsanleitung beachten.
- Die Bedienungsanleitung immer beim Gerät aufbewahren.
- Sicherstellen, dass das Gerät ausschließlich in einwandfreiem Zustand betrieben wird.
- Das Gerät niemals öffnen.
- Sicherstellen, dass ausschließlich Fachpersonal das Gerät bedient.
- Das Gerät ausschließlich nach Vorschrift anschließen.
- Sicherstellen, dass das Gerät ausschließlich im Originalzustand betrieben wird.
- Das Gerät ausschließlich mit empfohlenem Zubehör betreiben.
- Sicherstellen, dass das Gerät nicht über den Bemessungsdaten betrieben wird. (Siehe Kapitel 5 Technische Daten)
- Sicherstellen, dass das Original Zubehör nicht über den Bemessungsdaten betrieben wird.
- Das Gerät nicht in Umgebungen betreiben, in denen explosive Gase, Staub oder Dämpfe vorkommen.

3.1 Bedeutung der verwendeten Symbole

	ACHTUNG - GEFAHR! Lesen Sie die Bedienungsanleitung und Sicherheitshinweise
	Funktionserde des Messgerätes
•	USB-Anschluss
....	TCP-IP Schnittstelle
CE	Die CE-Kennzeichnung garantiert die Einhaltung der europäischen Richtlinien und der Bestimmungen bezüglich der Elektromagnetischen Verträglichkeit (EMV).
\sim	Wechselspannung
	Gleichspannung

3.2 Angaben zum Aufstellungsort und Montage des multimess F144-PQ

Das multimess F144-PQ ist für folgende Aufstellungsorte geeignet:

0 ⇒ Schalttafeleinbau

4 Bestimmungsgemäßer Einsatz

Das Produkt dient ausschließlich zur Messung und Bewertung von Spannungs- und Stromsignalen im Energienetz. Wird das Messgerät in einer vom Hersteller nicht festgelegten Weise benutzt, so kann der vom Gerät unterstütze Schutz stark beeinträchtigt werden.

Das Gerät ist für den Einsatz zur Messung im Niederspannungsbereich im CAT IV (300V) bis max. 690V Leiter /Leiter vorgesehen. Andere Spannungsebenen wie Mittel- oder Hochspannungen sind über Spannungswandler an das Gerät anzuschließen

5. Technische Daten

5.1 multimess F144-PQ Beschreibung

Der Power Quality Analysator und Störschreiber multimess F144-PQ für Nieder-, Mittel- und Hochspannungsnetze ist die zentrale Komponente eines Systems, mit dem alle Messaufgaben in elektrischen Netzen gelöst wer- den können.

Das multimes F144-PQ kann sowohl als Power Quality Interface nach Netzqualitätsnormen wie IEC61000-2-2 / EN50160 oder auch zur Überprüfung der technischen Anschlussrichtlinien wie DIN VDE AR 4110 und DIN VDE 4120 verwendet werden. Durch die verfügbaren SCADA Schnittstellen wie Modbus RTU/TCP als auch IEC 61850 kann das Gerät parallel zur lückenlosen Aufzeichnung von Messwerten über einen sehr langen Zeitraum zudem als hochgenauer Messumformer für alle physikalisch definierten Messgrößen in Drehstromnetzen verwendet werden.

Neben der Möglichkeit von Standardauswertungen besitzt das multimes F144-PQ auch einen Hochgeschwindigkeitsstörschreiber mit einer Aufzeichnungsrate von 40,96 kHz/10,24 kHz, sowie einen 10ms-RMS- Effektivwertschreiber. Somit ist eine detaillierte Auswertung von Netzstörungen möglich.

Das multimes F144-PQ ist mit einem fünften Stromeingang für eine kontinuierliche

Überwachung von Differenzströmen (Residual Current Monitoring - RCM) ausgestattet. Es ist möglich, Ansprechschwellen für Alarmmeldungen oder Warnungen frei zu programmieren.

Moderne Spannungsqualitäts- Messgeräte arbeiten nach der Norm IEC 62586, welche die komplette Produkteigenschaft eines Power Quality Analysators beschreibt. Diese Norm definiert neben dem Einsatzzweck, dem EMV-Umfeld und den Umgebungsbedingungen auch die exakten Messmethoden IEC 61000-4-30 – Klasse A, um für den Anwender eine vergleichbare Basis zu schaffen.

Nach IEC 62586 ist das multimes F144-PQ ein Gerät der Klasse PQI- A-FI-H und wird entsprechend vollumfänglich in exter- nen Labors zertifiziert.

Parameter IEC61000-4-30	Klasse
Netzfrequenz	Α
Genauigkeit der Spannungsmessung	AA
Spannungsschwankungen	Α
Spannungseinbrüche oderanstiege	A
Spannungsunterbrechungen	Α
Spannungsunsymmetrie	Α
Spannungsharmonische	Α
Spannungs-Zwischenharmonische	Α
Rundsteuerspannung	Α
Messhäufungsintervalle	Α
Synchronisation	Α
Markierung bei Ereignissen	Α
Anzahl der Störsignaleinflüsse	Α

Das multimes F144-PQ erfüllt für 100% der Parameter die Forderungen nach IEC 61000-4-30 Ed.3 (2015) für Klasse-A- Messgeräte.

Das Messgerät und dessen Entwicklung unterliegen auf- grund des Anwendungsbereichs in der kritischen Infrastruktur (KRITIS) strengen Sicherheitsforderungen. In Bezug auf diese, sind ein aktives Pachtmanagement, verschlüsselte Kommunikationsstandards als auch ein User Rights Management (URM) über RADIUS im Gerät

verfügbar! Hierzu gehören ebenso signierte Firmware Updates, Security Logging und der aktive Schutz vor Brute Force Attacken. Dies alles trägt zu einem sicheren Betrieb in Ihrer KRITIS Umgebung bei!

Das multimes F144-PQ wurde für Messungen in öffentlichen Netzen und Messungen in Industrieumgebungen mit bis zu 690 V (L-L) Messspannung entwickelt.

- 0 ⇒ Keine beweglichen Teile (Lüfter, Festplatte)
- 0 ⇒ CAT IV

0 ⇒ Der Benutzer kann den Speicherplatz mittels SD-Karte um bis zu 32 GB erweitern. Dadurch ist eine jahrelange Aufzeichnung ohne Verbindung zur Datenbank möglich.

1 Optional: "IEC61000-4-7 - 2 kHz bis 20 kHz" (B1)

O Frequenzmessung von Spannung und Strom gemäß IEC 61000-4-7 von 2 kHz bis 10 kHz. Die Norm IEC61000-4-7 beschreibt die Messung von Oberschwingungen und Zwischenharmonischen in Stromversorgungsnetzten und an angeschlossenen Geräten.

1 Optional: Differenzstromeingang

1 Temperatureingang für PT100 / PT1000 / KTY Sensoren

5.2 Technische Daten

- 0 ⇒ 5-Zoll-Farbdisplay
- 0 ⇒ Tastenfeld für die Grundkonfiguration am Gerät
- 0 ⇒ 1 GB interner Speicher (32 GB erweiterbar)
- 0 ⇒ IP54 im eingebauten Zustand
- 0 ⇒ Messkanalbandbreite 20 kHz (Spannung und Strom)
- 0 ⇒ 4 Spannungseingänge Genauigkeit < 0,1%
- 0 ⇒ 4 Stromeingänge
- 0 ↔ 5. Stromeingang für die Erfassung von Differenzströmen oder Ströme des Zentraler Erdungspunkt (ZEP) (ab FW Version 2.2)
- 0 ↔ Gleichzeitige Verarbeitung von abgetasteten und berechneten Spannungen und Strömen
- 0 ⇔ Spannungs- und Strom-Oszillograph (Abtastfrequenz: 40,96 kHz / 10,24 kHz)
- - Netzfrequenz, Effektivspannungen und -ströme (RMS), Zeiger für Spannung und Strom
 - ⇒ Leistungsaufzeichnungsrate: ~10ms (50 Hz) / ~8,33ms (60 Hz)
- 0 ⇒ Leistungsstarke Trigger Auslösungen
- 0 ↔ Online-Streaming von Spannungen und Strömen bei einer Abtastrate von 40,96 kHz
- 0 ⇒ IEC 61000-4-30, Klasse-A-Messdatenverarbeitung
- 0 ↔ Erfassung der Spannungsqualitätsvorfälle nach DIN EN 50160; IEC61000-2-2; -2-12;-2-4.
- 0 ⇒ Energiepuffer für Netzunterbrechungen bis 2 Sekunden
- 0 ↔ Spektralanalyse 2 kHz...20 kHz (90 Frequenzbänder, Bandbreite = 200 Hz) von Spannungen und Strömen gemäß IEC 61000-4-7
 - Spannungs- und Stromharmonischen n=2..50
 - 8 Digitaleingänge zur Triggerung von Störschrieben, Start / Stopp der Aufzeichnung und Aufzeichnung von externen Zuständen
 - ⇒ 4 Relais-Ausgänge zur Schutzüberwachung und Alarmmeldung
- 0 ⇒ EDGE Funktion mit 32 frei parametrierbaren Überwachungszuständen zur Überwachung und Triggerung aller Messgrößen – Ausgabe als Binärmeldung oder per Protokoll für Steuerungsaufgaben vor Ort!
- 0 ⇒ Kostenlose Auswertessoftware WinPQ lite

Option WinPQ Datenbanksoftware:

Analyse der Daten in einer Datenbank mit dem WinPQ-Softwarepaket. Permanente Kommunikation mit sehr vielen Geräten parallel möglich.

5.2.1 Abmessungen

Abmessungen	
LxBxH	144 x 144 x 90 mm o. Klemmen 144 x 150 x 110 mm inkl. Klemmen
Ausbruchmaß	138 x 138 mm (+0,8 mm)
Gewicht	
Gewicht	1220 g

5.2.2 Spannungsversorgung

Spannungsversorgung		
Merkmal	US8	US9
AC Nennbereich	100240 V	-
AC Arbeitsbereich	90264 V	-
DC Nennbereich	120320 V	2460 V
DC Arbeitsbereich	108350 V	1875 V
Leistungsaufnahme	≤ 10 W < 20 VA	≤ 10 W
Frequenz Nennbereich	5060 Hz	DC
Externe Sicherung	6 A	6 A
Charakteristik	В	В
Energiespeiche	2 Sek.	2 Sek.
Elektrische Sicherheit	CAT II	CAT II
IEC 61010-1:2010 &		
Cor.:2011,		
DIN EN 61010-1:2011		

Abhängig vom eingebauten Netzteil das Messgerät im richtigen Spannungsbereich versorgen.

5.2.3 Umgebungsbedingungen – Elektrische Sicherheit

Umgebungs- temperatur	Lagerung und Transport	Betrieb
Umgebungs-Temperatur	IEC 60721-3-1 / 1K5	IEC 60721-3-3 / 3K6
Grenzbetriebsbereich	-40+70 °C	-25…+55 ℃
	IEC 60721-3-2/2K4	
Umgebungstemperatur	IEC 60721-3- 1 / 1K5 -40+70 °C	IEC DIN EN 61010 H1: -25…+45 ℃ H2/H3: -25…+50 ℃
Nennbetriebsbereich	IEC 60721-3- 2 / 2K4 -40…+70 ℃	H1: -25+45°C H2/H3: -25+50 °C
Relative Luftfeuchtigkeit: 24 Std. Durchschnitt	595 % Keine Kondensation oder Eis	595 % Keine Kondensation oder Eis
Sonneneinstrahlung	-	700 W/m2
Vibrationen, Erderschütterungen	IEC 60721-3- 1 / 1M1 IEC 60721-3- 2 / 2M1	IEC 60721-3- 3 / 3M1

Elektrische Sicherheit	
IEC 61010-1 IEC 61010-2-030	
Schutzklasse	1
Verschmutzungsgrad	2
Überspannungskategorie	
Netzversorgungsoption	
H1	300 V / CAT II
H2/H3	150 V / CAT II
Messkategorie	300 V / CAT IV 600 V / CAT III
Höhe	≤ 2000m
IP Schutzklasse im eingebauten Zustand	IP54

5.2.4 Spannungs-Messeingänge

Spannungseingänge		
Kanäle	U ₁ , U ₂ , U ₃ , U _{N/E/4}	
Elektrische Sicherheit DIN EN 61010	300 V CAT IV 600 V CAT III	
Eingangsreferenz	PE	
Impedanz -> PE	10 MΩ 25pF	
Nenneingangs spannung Un	230 VAC	
Messbereichsendwert	0480 VAC L-E	
Überlastbarkeit, dauernd	600VAC	
Maximaler Crest-Faktor@Un	32,2	
Bandbreite	DC20 kHz	
Nenn-Netzfrequenz fn	50 Hz / 60 Hz	
Frequenzbereich der Grundwelle	fn ± 15 % 42,55057,5 Hz 51,06069,0 Hz	

Genauigkeit	
Grundschwingung, r.m.s. $U1 \le 150\% U_{nom}$ $0^{\circ}C \le TA \le +45 ^{\circ}C:$ $-25^{\circ}C \le TA \le +55 ^{\circ}C:$	±0.1% v. U _{nom} ±0.2% v. U _{nom}
Grundschwingung, Phase U1 ≥ 10% Unom:	±0.02°
Harmonische n = 250, r.m.s. Uh \ge 1% U _{nom} : U _h < 1% U _{nom} :	±5.0% v. U _h ±0.05% v. U _{nom}
Harmonische n = 250, Phase $U_h \ge 1\% U_{nom}$:	±0.5°
Zwischenharmonische	

Spannungseingänge		
$\label{eq:1} \begin{array}{l} n = 1 \dots 49, \mbox{ r.m.s.} \\ U_{ih} \ge 1\% \ U_{nom}; \\ U_{ih} < 1\% \ U_{nom}; \end{array}$	±5.0% v. U _h ±0.05% v. U _{nom}	
Netzfrequenz	±1 mHz @ 10 %…200 % U _{nom}	
Flickermeter DIN EN 61000-4-15:2011	Klasse F1	
Resteinbruchsspannung	±0,2 % U _{nom} @ 10 %…100 % U _{nom}	
Dauer des Einbruchs	±20 ms @ 10 %100 % U _{nom}	
Restspannungsanstieg	±0,2 % Unom @ 100 %150 % U _{nom}	
Dauer des Anstiegs	±20 ms @ 100 %150 % U _{nom}	
Dauer der Unterbrechung	±20 ms @ 1 %100 % U _{nom}	
Spannungsunsymmetrie	±0,15 % @ 1 %5 % Messwert	
Rundsteuerspannung (< 3kHz)	$\pm 5\%$ des Messwerts @ Us = 3 %15 % U _{nom} $\pm 0,15$ % U _n @ Us = 1 %3 % U _{nom}	

5.2.5 Stromeingänge

Stromeingänge	
Option	C30
Kanäle	I1, I2, I3, IN/4
Elektrische Sicherheit DIN EN 61010	300V CAT III
Eingangstyp	potentialfrei
Impedanz	≤ 4mΩ
Nenneingangsstrom I _{nom}	5 A _{AC}
Messbereichsendwert	10A _{AC}
Überlastungskapazität permanent ≤ 10s ≤ 1s	20 A _{AC} 100 A _{AC} 500 A _{AC}
Wellenform	Jede AC
Maximaler Crest-Faktor @ In	3
Bandbreite	25 Hz20 kHz
Anzugsdrehmoment	2 Nm

Genauigkeit	
Grundschwingung, r.m.s.	$11 \ge 10 \%$ FSR: ±0.1 % v. 11 11 < 10 % FSR: ±0.01 % v. FSR
Grundschwingung, Phase	I1 ≥ 10 % FSR: ±0.1°
Harmonische n = 250, r.m.s. $I_h \ge 3 \% I_{nom}$: $I_h < 3 \% I_{nom}$:	±5.0 % v. I _h ±0.15 % v. I _{nom}
Harmonische n = 250, Phase $I_h \ge 3\% I_{nom}$:	±0.5°
Zwischenharmonische n = 149, r.m.s. $I_{ih} \ge 3\% I_{nom}$: $I_{ih} < 3\% I_{nom}$:	±5.0% v. l _{ih} ±0.15% v. l _{nom}

5.2.6 Differenzstromeingang

Differenzstromeingang (RCM) - (FW Version 2.2)		
Nenneingangsstrom In	30 mA	
Impedanz	4 Ω	
Überlastungskapazität	5 A (1 Sek.)	
Auflösung	24 Bit ADC	

5.2.7 Binäreingänge – Binärausgänge

Binärausgänge (BO)	
4 Binärausgänge	3 x Schließer 1 x Wechsler
Kontaktspezifikation (EN60947-4-1, -5-1) Konfiguration Nennspannung Nennstrom Nennlast AC1 Nennlast AC15, 230VAC Unterbrechungsleistung DC1, 30/110/220 V	3 x SPST (Single Pole Single Throw) 1 x SPDT (Single Pole Double Throw) 250 VAC 6 A 1500 VA 300 VA 6/0,2/0,12 A
Anzahl der Schaltvorgänge AC1	\geq 60·10 ³ elektrisch
Elektrische Isolation	Von allen internen Potentialen isoliert
Elektrische Sicherheit EN 61010	300 V

Binäreingänge (BI)	
8 Binäreingänge Bereich	0 V250 VAC / VDC
– H – Pegel – L – Pegel	> 35 V < 20 V
Signalfrequenz	DC70 Hz
Eingangswiderstand	> 100 kΩ
Elektrische Isolation	Optokoppler, elektrisch gewurzelt

Zu verwendende Anschlussleitungen:

- Schutzeinrichtungen (Sicherung) für CAT II vorsehen.
- Keine Mischung von berührbaren und gefährlichen aktiven Stromkreisen
- Anschlussleitungen müssen für eine Temperatur von mindestens 62°C ausgelegt sein

5.2.8 Temperatureingang

Temperatureingang PT 100 / PT 1000 / KTY (FW Version 2.2)					
Anschlussart Messfühler (Softwareumschaltung)	2 Draht 3 Draht 4 Draht				
Update Rate	1 Sek. / 1 Hz				
Auflösung	15 Bit				
Bürde	1,9 kΩ				
Genauigkeit	0.05% FSR				

5.2.9 Erdungsanschluss

Das Gerät verfügt über eine Schutzerde, die auch als Bezugspotential der Spannungseingänge dient.

Die Schutzererde ist mit und Klemme X1 / 13 am Messgerät gekennzeichnet.

Schließen Sie das Erdungskabel an die Klemme X1 / 13 des Messgerätes an und ziehen Sie die Schraube fest. Verwenden Sie für den Anschluss einen Ringkabelschuh und sorgen Sie für festen Sitz!

GEFAHR! Lebensgefahr durch Stromschlag

Der unsachgemäße Anschluss dieses Messgerätes kann zu Tod, schweren Verletzungen oder Brandgefahr führen

- C Die Funktionserde muss immer an PE Potential angeschlossen werden
- Cie Funktionserde darf unter keinen Umständen eine gefährliche Spannung führen.

5.2.10 Datenspeicher

Speicherung der gemessenen Daten				
Interner Speicher	1024 MB			
SD-Speicherkarte	1 GB bis 32 GB			

5.2.11 Kommunikationsprotokolle

Kommunikationsprotokoll
0 MODBUS RTU 0 MODBUS TCP
0 IEC60870-5-104 (Option P1) 0 IEC61850 (Option P2)

5.2.12 Zeitsynchronisations- protokoll

Zeitsynchronisierungsprotokoll (Empfangen / Slave)				
0 IEEE1344 / IRIG-B000007				
0 GPS (NMEA +PPS)				
0 DCF77				
0 NTP				

5.2.13 Kommunikationsschnittstellen

Speicherung der gemessenen Daten				
Ethernet	RJ45 (10/100 MBit)			
USB	USB – Type-C			
2 * RS232/RS485 auf Klemme	umschaltbar			

	Sachschaden durch unberechtigten IT-Zugriff über Netzwerkschnittstelle
HINWEIS!	IT – Sicherheitsrichtlinien des Unternehmens sind zu beachten!
	IT – Sicherheitseinstellungen des Gerätes sind zu beachten!

LAN-, COM Anschlüsse

- Alle COM- und LAN- Verbindungsleitungen dürfen auch im abgezogenen Zustand nicht den Isolationsabstand zu gefährlichen Teilen unterschreiten.
- Das Lösen von Einzeladern aus der Klemmung darf nicht möglich sein.
- Ciehen der Stecker nur direkt am Stecker Gehäuse, keinesfalls am Kabel.
- Auf eine Fixierung oder Zugentlastung für Anschlusskabel ist zu achten.

5.3 Mechanischer Aufbau

Das multimess F144-PQ wird als Schalttafeleinbaugerät verwendet und erfüllt im eingebauten Zustand IP54. Alle Anschlüsse sind über Phoenix-Klemmen zugänglich. Mit Ausnahme der Strom- und Spannungseingänge sind die Anschlüsse in Einsteck-Klemmtechnik ausgeführt.

Für die Kommunikation steht eine TCP/IP-Schnittstelle (RJ45-Anschluss LAN) sowie eine USB Schnittstelle (Typ C Buchse) zur Verfügung. Zusätzlich zum internen Speicher von 1 GB kann der Gerätespeicher über eine externe Speicherkarte um weitere 32 GB erweitert werden. Über die Speicherkarte können auch sehr einfach Messdaten vom Gerät ausgelesen und an einen Auswerte-PC übermittelt werden.

5.3.1 Batterie

Seitenansicht rechts multimes F144-PQ

1 Batteriewechsel:

Die Lebensdauer der Batterie ist > 5 Jahre und wird nur bei fehlender Uhrzeitsynchronisation für die Uhrzeit RTC benötigt. Ein Batteriewechsel beeinflusst den Gerätebetrieb bei angeschlossener Netzversorgung nicht, da das Gerät intern mit Spannung versorgt wird.

Batterie aus dem Gehäuse ziehen und neue Batterie einsetzten.

1 Batterietyp:

Li-Knopfzelle CR1632

5.4 Klemmenbezeichnungen multimess F144-PQ

Anschluss- Leiste Nr.	Bezeichnung		Funktion	Klemme Nr.	Quer- schnitt in mm ²	Abisolier länge in mm	Anzugs- dreh- moment in Nm
X1	Hilfsspannung	UH	L (+)	11	0,22,5	10	0,50,6
			N (-)	12	0,22,5	10	0,50,6
X1	Bezugspotenzial (Erde)	GND	PE	13	Ringkabel- schuh	-	0,50,6
		BICOM	-	21		10	0,50,6
		B1	+	22		10	0,50,6
		B2	+	23	Charm	10	0,50,6
	Dia Xua	B3	+	24	0,22,5	10	0,50,6
X2	Binare Eingänge	B4	+	25		10	0,50,6
	5 5	B5	+	26	Flexibel: 0,22,5	10	0,50,6
		B6	+	27		10	0,50,6
		B7	+	28		10	0,50,6
		B8	+	29		10	0,50,6
	Phasenspannung L1 (AC)	U1	L1	31	0,22,5	10	0,50,6
Х3	Phasenspannung L2 (AC)	U2	L2	32		10	0,50,6
	Phasenspannung L3 (AC)	U3	L3	33		10	0,50,6
	Sternpunktspannung (AC)	U4	N/E	34		10	0,50,6
		T1		41	0,140,5	10	0,50,6
X4	PT100/PT1000/KTY Temperatureingang			42		10	0,50,6
				43		10	0,50,6
				44		10	0,50,6
	Relaisausgang	R1	Schließer (+)	51	Starr: 0,21,5 Flexibel: 0,22,5	10	0,50,6
			Öffner (+)	52		10	0,50,6
			Pol (-)	53		10	0,50,6
		R2	Schließer (+)	54		10	0,50,6
X5			Pol (-)	55		10	0,50,6
		R3	Schließer (+)	56		10	0,50,6
			Pol (-)	57		10	0,50,6
		R4	Schließer (+)	58		10	0,50,6
			Pol (-)	59		10	0,50,6

Fortsezung der Tabelle nächste Seite

Fortsezung der Tabelle

Anschluss- Leiste Nr.	Bezeichnung		Funktion	Klemme Nr.	Quer- schnitt in mm ²	Abisolier länge in mm	Anzugs- dreh- moment in Nm
X6	Phasenstrom L1	11	S1 (K) S2 (L)	61 62	0,22,5	10	0,50,6
	Phasenstrom L2	12	S1 (K) S2 (L)	63 64	0,22,5	10	0,50,6
	Phasenstrom L3	13	S1 (K) S2 (L)	65 66	Ringkabel- schuh	-	0,50,6
	Neutralleiter / Sum- men- strom	14	S1 (K) S2 (L)	67 68		10	0,50,6
Х9	RCM - Differenz- stromeingang	15	+	91	Starr: 0,22,5	10	0,50,6
			-	92	Flexibel: 0,22,5	10	0,50,6

5.4.1 Montage

Das multimess F144-PQ wird als Schalttafeleinbaugerät verwendet und erfüllt im eingebauten Zustand IP54. Die Montage muss mit folgenden Ausbrüchen und Minimalabständen erfolgen (siehe nachfolgende Abbildung). Die maximale Dicke der Schalttafel für den Einbau eines multimess F144-PQ beträgt 8 mm.

HINWEIS!

Sachschaden durch Nichtbeachtung der Montagehinweise!

Durch Nichtbeachtung der Montagehinweis, oder falsche Montage kann das Gerät beschädigt werden!

CAchten Sie auf das hörbare Einschnappen der Befestigungselemente

Befestigung des multimess F144-PQ sind vier Halteklammern im Lieferumfang enthalten. Diese müssen am multimess F144-PQ an allen vier Ecken ins Gehäuse eingerastet werden (siehe nachfolgende Abbildung). Im Anschluss die Halteklammern mithilfe eines Innensechskantschlüssel (2,5mm) auf der Rückseite des multimess F144-PQ gegen die Schalttafel mit einem maximalen Drehmoment von 5 Nm anschrauben!

Halteklammer für multimess F144-PQ

Halteklammer eingerastet am multimess F144-PQ

5.5 Versorgungsspannungsanschluss

Das multimess F144-PQ ist in zwei verschiedenen Versorgungsspannungen lieferbar. Bitte entnehmen Sie vor Anschluss die korrekte Versorgungspannung vom Typenschild.

Beispiel einer Anschaltung an 230V AC

Nach Anschluss und zuschalten der Spannungsversorgung leuchtet die Status LED rot, wechselt zu grün und das Display startet im Inbetriebnahme Assistent.

Lebensgefahr durch Stromschlag

Schwere Körperverletzungen oder Tod können erfolgen, durch:

- Berühren von blanken oder abisolierten Adern, die unter Spannung stehen.
- Berührungsgefährliche Eingänge am Gerät.
- Sicherstellen, dass das Gerät im spannungsfreien Zustand angeschlossen wird.
- C Auf Fixierung und Zugentlastung aller Anschlussleitung ist zu achten.
- Alle Leitungsanforderungen der Klemmblöcke sind einzuhalten. (z. B. Abisolierlänge der Leitungen)

HINWEIS!

Sachschaden durch Nichtbeachtung der Anschlussbedingungen oder unzulässige Überspannungen!

Durch Nichtbeachtung der Anschlussbedingungen oder Überschreiten des zulässigen Spannungsbereichs kann Ihr Gerät beschädigt oder zerstört werden.

Bevor dem Gerät die Versorgungsspannung angelegt wird, müssen folgende Punkte beachtet werden:

- Spannung und Frequenz müssen den Angaben des Typenschilds entsprechen! Grenzwerte, wie in den technischen Daten beschrieben, einhalten!
- Merkmale des Gerätes beachten!
- In der Gebäude-Installation ist die Versorgungsspannung mit einem den Anforderungen von IEC 60947-1 und IEC 60947-3 erfüllenden und gelisteten Leitungsschutzschalter und einer Sicherung vorzunehmen!
- Den Leitungsschutzschalter
 - für den Nutzer leicht erreichbar und in der Nähe des Geräts anbringen.
 - für das jeweilige Gerät kennzeichnen.
- C Die Versorgungsspannung nicht an den Spannungswandlern abgreifen.
- Für den Neutralleiter eine Sicherung vorsehen, wenn der Neutralleiteranschluss der Quelle nicht geerdet ist.

5.6 Netzanschluss multimess F144-PQ

Der Netzanschluss des multimes F144-PQ ist abhängig von der Netzform, in der gemessen werden soll.

Das Messgerät ist zur direkten Messung in der Niederspannung (3 Phasen / 4 Leiter Anschluss) für die Nie- derspannungsnetze (TN-, TT- und IT-Netz) oder für den Wohn- und Industriebereich vorgesehen (siehe Kapitel 5.6.1 und 5.6.2). Eine Sonderform der Niederspannungsmessung ist die Messung 4-Leiter / 1 Pha- senanschluss (siehe Kapitel 5.6.3) mit der bei gleichen Erdungsverhältnissen drei voneinander unabhängige Spannungskreise und Stromkreise gemessen werden können.

Für die Mittel und Hochspannung kann das Gerät über geeignete Wandler angeschlossen werden. Sowohl ein Anschluss mit drei Spannungs- und Stromwandlern (siehe Kapitel 5.6.4), als auch der Anschluss über Wandlersparschaltungen (V-Schaltung, Aron Schaltung- siehe Kapitel 5.6.4.2) ist möglich.

Außerdem sind Strommessungen mit Kleinsignaleingängen mit den entsprechenden Sensorwandler möglich (siehe hierzu Kapitel 5.2.5).

Personen- und Sachschaden durch Nichtbeachtung der Sicherheitsbestimmungen

Bitte lesen Sie vor der Durchführung von Anschlüssen dieses Handbuch gründlich durch und befolgen Sie die hier beschriebenen Sicherheitsmaßnahmen.

Beispiel: Anschluss eines multimes F144-PQ im 3-Phasen - 4-Leiter Anschluss

5.6.1 3-Phasen / 4-Leiter Anschluss

1 Spannungsanschlüsse

- O Die Spannungsanschlüsse sind wie im Schaltbild oben auszuführen.
- 0 Wenn kein N-Leiter Anschluss vorhanden, Anschlüsse E und N miteinander verbinden.
- O Sicherstellen, dass Schaltungsart (4-Leiter) eingestellt ist.

1 Stromanschlüsse

Das multimes F144-PQ ist für Messkreiseausgelegt. Das Stromwandlerverhältnis ist werkseitig auf Nennstrom eingestellt (z.B. 5 A) und muss gegebenenfalls an die verwendeten Wandler angepasst werden. Es können nur Wechselströme, keine Gleichströme gemessen werden. Die entsprechenden Wandler können von KBR bezogen werden.

5.6.2 3-Phasen / 4-Leiter Anschluss ohne N-Leiter Strom

multimes F144-PQ ohne N-Leiter Stromwandler im 4-Leiter Anschluss

1 Spannungsanschlüsse

- 0 Wenn kein N-Leiter Anschluss vorhanden, Anschlüsse E und N miteinander verbinden.
- 0 Sicherstellen, dass Schaltungsart (4-Leiter-Netz) eingestellt ist.

1 Stromanschlüsse

- 0 Ist im 3-Phasen / 4-Leiter-Netz kein Neutralleiterstrom verfügbar, so müssen die S2 Stromeingänge des multimes F144-PQ alle kurzgeschlossen und die S2 Klemmen der eingesetzten Stromwandler auf S1 (Klemme X6:67) verbunden werden.
- 0 Das multimes F144-PQ ist für Messkreise ausgelegt.

GEFAHRI Lebensgefahr durch Stromschlag

Achtung gefährliche Berührungsspannung! Überschlag und hohe Kurzschlussströme in CAT III und CAT IV möglich!

- Sicherstellen, dass am multimess F144-PQ der PE-Leiter (Erdung) angeschlossen ist.
- Vor Beginn der Arbeiten, Spannungsfreiheit pr
 üfen!
- Schutzeinrichtungen für CAT II, CAT III oder CAT IV vorsehen.
- C Hochlastsicherungen >10 kA bzw. >50 kA sind entsprechend der CAT einzusetzen.
- Stromwandler vor Beginn der Arbeiten kurzschließen.
- C Auf Fixierung und Zugentlastung aller Anschlussleitung ist zu achten.
- CAlle Leitungsanforderungen der Klemmblöcke sind einzuhalten
 - (z.B. Abisolierlänge der Leitungen).

5.6.3 4-Leiter Anschluss, 1-Phasig

In der Schaltungsart 4-Leiter-Netz, 1-Phasig werden keine Leiter-Leiter Ereignisse sowie dreiphasige Netzereignisse bewertet.

Es können beliebige Spannungen mit dem gleichen Erdpotential (z.B. drei Netze mit der Phase L1) und beliebige Ströme angeschlossen werden.

5.6.4 3-Phasen / 3-Leiter Anschluss

5.6.4.1 Anschluss an Sekundärwandlern

1 Spannungsanschlüsse

- O Sicherstellen, dass bei jeder Messung die Messleitung N/E an Klemme 34 angeschlossen ist. Dies ist in der Regel der Erdungspunkt des Spannungswandlers.
- 0 Sicherstellen, dass Schaltungsart (3-Leiter-Netz) eingestellt ist (siehe hierzu Kapitel 6.3, Kapitel 6.5.1).
- 0 Spannungswanderverhältnis einstellen.
- 0 Nennspannung der Leiter-Leiter Spannung eingeben.

1 Stromanschlüsse

0 Stromwanderverhältnis einstellen.

Anschluss multimess F144-PQ Strom IN im 3-Leiter Netz

Wird im 3-Leiter Netz ein Strom am Eingang IN angeschlossen, so wird dieser nicht physikalisch gemessen. Der Strom IN wird im Dreileiterbetrieb immer berechnet.

A GEFAHR!

Lebensgefahr durch Stromschlag

Achtung gefährliche Berührungsspannung! Überschlag und hohe Kurzschlussströme in CAT III und CAT IV möglich!

- Sicherstellen, dass am multimess F144-PQ der PE-Leiter (Erdung) angeschlossen ist.
- Vor Beginn der Arbeiten, Spannungsfreiheit pr
 üfen!
- Schutzeinrichtungen für CAT II, CAT III oder CAT IV vorsehen.
- C Hochlastsicherungen >10 kA bzw. >50 kA sind entsprechend der CAT einzusetzen.
- Stromwandler vor Beginn der Arbeiten kurzschließen.
- C Auf Fixierung und Zugentlastung aller Anschlussleitung ist zu achten.
- Alle Leitungsanforderungen der Klemmblöcke sind einzuhalten (z.B. Abisolierlänge der Leitungen).
- Nach DIN VDE 0414 müssen sämtliche Wandler ab einer Betriebsspannug von 1000 V geerdet sein.

5.7 Weitere Anschlüsse

5.7.1 RS232 / RS485 Schnittstellen

Das multimes F144-PQ verfügt über zwei serielle Schnittstellen die wahlweise als RS232 oder RS485 verwendet werden können. Die Umschaltung und Funktionen werden durch die Parametrierung über die Software WinPQ Lite oder das Display festgelegt.

1 Folgende Funktionen sind verfügbar:

- 0 Modbus auf COM 1 über RS232 / RS485
- 0 Zeitsignale von verschiedenen externen Zeitgebern . Weitere Infos hierzu finden Sie in Kapitel: 6.5.2

5.7.1.1 Anschluss und Terminierung RS232/RS485 Schnittstelle

Bild	Schnittstelle	Klemmen Nr.	Funktion
Term		77	RS485 Pos (A)
		76	RS485 Neg (B)
CON		75	CTS
1100	COM 1 (X7)	74	RxD
		73	GND
Term.		72	RTS
		71	TxD
		87	RS485 Pos (A)
		86	RS485 Neg (B)
* 1		85	CTS
	COM 2 (X8)	84	RxD
		83	GND
		82	RTS
		81	TxD

Verwenden Sie ein verdrilltes abgeschirmtes Kabel für die RS232- und RS485-Schnittstellen. Die Schirme aller Kabel sind auf eine spannungsfreie Erde möglichst nahe am Gerät anzuschließen!

Bitte beachten Sie, dass die maximale Kabellänge von 1200m bei RS485 und 15m bei RS232 nicht überschritten wird!

1 Terminierung RS485

Der jeweils erste und letzte Teilnehmer am Bus ist zu terminieren. Am multimes F144-PQ sind hierfür Dip Schalter "Term 1" für die COM 1 Schnittstelle und "Term 2" für die COM 2 Schnittstelle vorgesehen.

- 0 Beide DIP Schalter auf ON: Busabschluss ist eingeschaltet.
- 0 Beide DIP Schalter
 - 0 Beide DIP Schalter auf Off: Busabschluss ist ausgeschaltet.

5.7.1.2 Anschluss des multimess F144-PQ als Master an einem Bus

Das Messgerät kann auch als Modbus RTU-Master in einem Bus fungieren. Hinweise zur Parametrierung und Funktionsweise sind in 8.1 und 8.2 zu finden. Beim Aufbau des Busses sollten die folgenden Hinweise beachtet werden:

1 RS-485

- 0 Max. 32 Teilnehmer erlaubt (Gateway plus 31 RTU-Slaves)
- 0 RS-485A, RS-485B und GND verdrahten (siehe Kap. 5.7.1.1)
- 0 Je 1 Abschlusswiderstand (120...150 Ohm) am Anfang und am Ende des Backbones
- 0 Schirm des Kabels nur auf einer Seite erden (an PE)!
- 0 Maximale Länge des Backbones: ca. 700m (bei niedrigen Baudraten auch bis zu 1200 m)

1 RS-232

- 0 Nur 2 Teilnehmer erlaubt (Gateway plus ein RTU-Slave)
- 0 RXD, TXD und GND verdrahten (siehe Kap. 5.7.1.1)
- 0 Schirm des Kabels nur auf einer Seite erden (an PE)!
- 0 Maximale Länge ca. 20 m

Abbildung 1: Exemplarischer Anschluss eines RS485-Busses mit Modbus Gateway

5.7.2 PT100/PT1000/KYT Temperatureingang

Das multimes F144-PQ verfügt über einen Temperatureingang zur Aufzeichnung von Prozesstemperaturen.

Bitte beachten Sie bei Anschluss des Fühlers, dass eine geschirmte Leitung mit verdrillten, gleichlangen Adern- Paaren verwendet werden sollte. Zudem darf die Gesamtbürde von $1,9 \text{ k}\Omega$ inklusive des Thermo- elements nicht überschritten werden.

Das multimes F144-PQ hat generell drei Anschlussmöglichkeiten:

1 PT100 in 2-Leiter-Schaltung

Bei einer 2-Leiter-Schaltung geht der Widerstand der Zuleitung als Fehler in die Messung ein.

1 PT100 in 3-Leiter-Schaltung

Der Einfluss des Leitungswiderstandes wird mit einer 3-Leiter-Schaltung weitestgehend kompensiert..

1 PT100 in 4-Leiter-Schaltung

Die 4-Leiter-Schaltung eliminiert den Einfluss der Anschlussleitung auf das Messergebnis vollständig

5.7.3 Differenzstromeingang (ab Firmware v2.2)

Das multimes F144-PQ ist auf der Rückseite mit einem Differenzstromeingang zur Differenzstromüberwachung (RCM) ausgestattet. Der Eingang ist sowohl für Wechselströme, pulsierende Gleichströme und reine Gleichströme geeignet.

Es können alle externen Differenzstromwandler mit einem Nennstrom von 30 mA an den Klemmen 91 / 92 angeschlossen werden.

1 Anschluss Differenzstromwandler

Anschlussvariante über PE Differenzstromwandler

Anschlussvariante über Differenzstromwandler über L1/L2/L3/N

5.7.4 Binärausgänge

Das multimes F144-PQ verfügt über vier Binärausgänge, die sowohl Gleichstrom als auch Wechselstrom schalten können.

Folgende technischen Funktionen sind realisierbar:

- 0 Relais B01 Watchdog Relais Eigenüberwachung des Messgerätes
- 0 Relais B02 bis B04 Meldung Triggerereignis Triggermöglichkeiten und Parametrierung.

Die Binärausgänge können AC- Lasten bis zu den angegeben technischen Angaben direkt schalten!

Der Anschluss erfolgt direkt über die Klemmen X5. Die Klemmenbelegungen ist im Kapitel 5.4 spezifiziert!

Lebensgefahr durch Stromschlag

Achtung gefährliche Berührungsspannung! Überschlag und hohe Kurzschlussströme in CAT III und CAT IV möglich!

- ➔ Vor Beginn der Arbeiten, Spannungsfreiheit pr
 üfen!
- Schutzeinrichtungen für CAT II, CAT III oder CAT IV vorsehen.
- C Auf Fixierung und Zugentlastung aller Anschlussleitung ist zu achten.
- Alle Leitungsanforderungen der Klemmblöcke sind einzuhalten (z.B. Abisolierlänge der Leitungen).

5.7.5 Binäreingänge

Das multimes F144-PQ verfügt über acht Binäreingänge, die mit folgenden Funktionen belegt werden können:

- 0 Trigger der Rekorder
- 0 Trigger Intervall der Leistungsmittelwerte
- 0 für die Steuerung der Aufzeichnung

Die Binäreingänge sind für die Spannung 48 - 250 V AC/DC ausgelegt, wobei die Pegelerfassung auf folgende Kennwerte festgelegt ist:

1 230 V - Eingänge

- 0 High Pegel > 35 V
- 0 Low Pegel < 20 V

 $/ \Lambda$

GEFAHR! Lebensgefahr durch Stromschlag

Achtung gefährliche Berührungsspannung!

- Vor Beginn der Arbeiten, Spannungsfreiheit pr
 üfen!
- C Auf Fixierung und Zugentlastung aller Anschlussleitung ist zu achten.
- Alle Leitungsanforderungen der Klemmblöcke sind einzuhalten (z.B. Abisolierlänge der Leitungen).

5.8 Messung / Funktionen

Norm	Beschreibung
EN50160	Europäischer PQ Standard
IEC61000-2-2	EMV Standard Niederspannung
IEC61000-2-12	EMV Standard Mittelspannung
IEC61000-3-6/7	MV Standard Hochspannung
IEC61000-2-4 (Klasse 1, 2, 3)	EMV Standard Industrie
IEC61000-3-2/3	Grenzwerte für Stromharmonische
NRS048/IEEE519	Internationale PQ Standards
IEC61000-4-30 Class A Edition 3	Verfahren zur Messung der Spannungsqualität
IEC61000-4-7	EMV Standard bis 18,6 kHz
IEC61000-4-15	Flickermeter

multimes F144-PQ - Automatische Ereigniserkennung und Messnormen:

5.8.1 Permanente Aufzeichnung:

Fünf feste und zwei variable Messzeitintervalle stehen für die Permanentaufzeichnung zur Verfügung. Alle Messwerte können in den Datenklassen frei aktiviert oder deaktiviert werden.

Eine ausführliche Übersicht der verfügbaren Messwerte je Datenklasse sind im Technischen Datenblatt aufgeführt.

- 0 10/12 Perioden (200 ms)
- 0 150/180 Perioden (3 sec.)

0 N*min (einstellbar von 2 Min. bis 60 Min.)

- 0 1 sec
- 0 10/12 Perioden (200 ms)
- 0 10 min
- 0 N*sec (einstellbar von 2 sec. bis 60 sec.) 0 2 Std.

26445_EDEBDA0306-1324-1_DE

5.8.2 PQ-Ereignisse

Norm	Untere	Obere	
Spannungseinbruch (T/2)	\checkmark		
Spannungsanstieg (T/2)		✓	
Spannungsunterbrechung (T/2)	\checkmark		
Schnelle Spannungsänderung (T/2)	Filter für gleitenden Mittelwert Mittel +/- Schwellenwert		
Spannungsänderung (10 min)	\checkmark	✓	
Spannungsunsymmetrie (10 min)		✓	
Netz-Rundsteuerspannung (150/180T)		✓	
Spannungsharmonische (10 min)		✓	
Spannungsgesamtverzerrung (THD) (10 min)		✓	
Kurzzeit-Spannungsschwankungen PST (10 min)		✓	
Langzeit-Spannungsschwankungen PLT (10 min)		✓	
Netzfrequenz (10 s)	✓	✓	

5.8.3 Trigger Auslösung von Störschrieben

Trigger Auslösung	Untere	Obere	Sprung
Effektivwert (RMS) Phasenspannungen (T/2)	✓	✓	✓
Effektivwert (RMS) Phasen-Phasen-Spannungen (T/2)	✓	✓	✓
Effektivwert (RMS) Rest-/Nullleiter-Erdleiter-Spannung (T/2)		✓	✓
Positive Sequenzspannung (T/2)	✓	✓	
Negative Sequenzspannung (T/2)		✓	
Nullsequenzspannung (T/2)		✓	
Phasenspannung (T/2)			✓
Phasenspannungswellenformen (Hüllkurventrigger)	+/- Schwellenwert		
Phase-Phase-Spannungswellenformen (Hüllkurventrigger)			
Rest-/Nullleiter-Erdleiter-Spannungswellenform (Hüllkurventrigger)			
Effektivwert (RMS) Phasenströme (T/2)	\checkmark \checkmark \checkmark		
Effektivwert (RMS) Gesamt-/Nullleiterstrom (T/2)		✓	✓
Netzfrequenz (T/2)	✓	✓	✓
Binäreingänge (entprellt)	Steigende, fallende Flanke		
Trigger Befehl	extern		

5.8.4 Speicherverwaltung

Das multimes F144-PQ ist mit einem internen Speicher von 1 GB ausgerüstet und mit einem intelligenten Speichermanagement versehen. Diese sorgt dafür, dass nach dem First in First Out Prinzip (FiFo) immer die ältesten Datensätze von den aktuellsten Daten überschrieben werden.

Standardmäßig ist das Messgerät in zwei Speicherbereiche aufgeteilt:

- 0 Kontinuierliche Messdaten mit 50% des Gesamtspeichers,
- 0 Störschriebe, Ereignisse und weitere asynchrone Messdaten.

In der Standardparametrierung mit ca. 800 Messgrößen in der 10-Minuten-Datenklasse ist das Gerät in der Lage, über 140 Wochen kontinuierlich und lückenlos alle 800 Messgrößen wie z.B. Strom, Spannung, Harmonische und Leistungen aufzuzeichnen.

1 Speicheraufteilung

Die Speicherverteilung des multimess D9-PQ verwendet den internen 1 GB Speicher in einem zirkularen Ringspeicher für alle Messdaten.

Der Ringspeicher ist wie folgt aufgeteilt:

- 0 512 MB zirkularer Speicher für Langzeitmessdaten
- 0 320 MB zirkularer Speicher für Störschriebe (Oszilloskopbilder; ½ Perioden RMS Werte)
- 0 16 MB zirkularer Speicher für Logfiles und Power Quality Ereignisse

Zusätzlich können in jedem zirkularen Speicherbereich maximal 512 Dateien gesichert werden.

Es ist möglich die Speicheraufteilung per Parameter zu ändern. Kontaktieren Sie hierzu den Support von KBR.

5.8.4.1 Speichererweiterung mit SD Karte

Wird eine separate SD-Speicherkarte in das Gerät gesteckt, so meldet sich das Gerät mit folgendem Auswahlmenü:

- 0 Kopieren aller Messdaten und Rekorder der letzten 7 Tage,
- 0 Kopieren aller Messdaten und Rekorder der letzten 30 Tage,
- 0 Kopieren aller Messdaten und Rekorder im Gerätespeicher (Speicherkopie),
- 0 Zirkular (ext) bedeutet, dass die SD-Speicherkarte im Gerät verbleibt und als zirkularer Ringspeicher genutzt wird. Wird eine Speicherkarte größer ein Gigabyte verwendet, so wird auch die Speicherdauer erweitert (extended).

SD-	SD-Sync. Methode		
	7 Tage		
	30 Tage		
	Speicherkopie		
	zirkular (ext.)		

Mit der Bestätigung "OK" beginnt das multimess F144-PQ selbstständig die Daten auf die SD-Karte zu kopieren.

Die Mindestgröße für eine externe Speicherkarte liegt bei 1 GB. Das Gerät kann Speicherkarten bis maximal 32 GB verwalten.

Unter dem Menüpunkt "Speicherverwaltung" sieht man den Fortschritt des Kopiervorganges.

Cum die Speicherkarte zu entnehmen, Funktion "SD Karte entfernen" betätigen.

Die Funktion "SD Karte entfernen" stoppt die Kopierfunktion der Messdaten des internen Speichers auf die SD-Speicherkarte und gibt die Karte frei zum Entfernen.

	Datenverlust! Defekt / Datenverlust durch falsche Bedienung.
HINWEIS!	Vor Herausziehen der SD-Karte muss die Funktion "SD-Karte entfernen" aktiviert werden, die sicherstellt, dass es zu keinem Datenverlust kommt!

6. Betrieb/Bedienung multimess F144-PQ

6.1 Erste Inbetriebnahme

Wird der Netzanalysator multimess F144-PQ zum ersten Mal gestartet, meldet sich das Gerät in einem geführten "Assistenten" Modus. Der Bediener wird automatisch durch die Erstinbetriebnahme des Messgerätes geführt. Dieser Assistent muss einmalig nach vollständigem Anschluss des PQ – Messgerätes durchgeführt werden.

ĺ	Es ist zu empfehlen, den Assistenten erst nach Abschluss sämtlicher Verdrahtungen vorzunehmen damit keine falschen Messdaten aufgrund nicht vorhandener Messspannung, Strömer oder nicht eingegebener Parameter aufgezeichnet werden.
---	--

Die Aufzeichnung der Messdaten erfolgt ab Firmware Version 2.0 erst nach vollständigem Abschluss des Assistenten!.

6.2 Erste Inbetriebnahme – Assistent Bedienung

Über das Steuerkreuz am multimess F144-PQ können folgende Aktionen durchgeführt werden.

- Pfeiltaste rechts / unten: weiter im Assistenten
- ▶ Pfeiltaste links / oben: zurück im Assistenten
- ► Enter Taste 🛃 : Ändern von Parametern

6.3 Erste Inbetriebnahme – Assistent

6.3.1 Assistent: Einstellung Sprache

0 Auswahl der Displaysprache

6.3.2 Assistent: Einstellung PQ-Norm

0 Auswahl der PowerQuality Norm

Mit Tastendruck auf kann zwischen den folgenden PQ-Normen umgeschaltet werden.

- Niederspannungsnetz TN-System
 => EN50160-NS
- Niederspannungsnetz IT-System
 => EN50160-NS-IT
- Mittelspannungsnetz
 EN50160-MS
- Hochspannungsnetz
 => EN50160-HS

Automatische Grundeinstellungen und Grenzwerte für folgende Spannungsebene nach EN50160.

Die Auswahl der Spannungsebene hat sowohl Einfluss auf die Aufzeichnung der Datenpunkte, die Grenzwerte als auch auf die IEC 61850 Schnittstelle. Bitte lesen Sie hierzu die Bedienungsanleitung im Kapitel IEC61850.

6.3.3 Assistent: Einstellung Netzform

1 Weitere Informationen zum Netzanschluss siehe Hardwareanschluss

0 Netzform:

Die Eingabe der Netzform "3-Leiter Netz", "4-Leiter Netz" bzw. "4 x 1-Leiternetz" bestimmt die Erfassung der Power Quality Ereignisse.

Auswahl zwischen 3- und 4 Leiternetz.

- In einem 3 Leiternetz werden alle Power-Quality Ereignisse aus den Leiter-Leiter Spannungen berechnet.
- In einem 4 Leiternetz, bzw. 4 x 1 Leiternetz werden alle Power Quality Ereignisse aus den Leiter-Erde Spannungen ermittelt.

6.3.4 Assistent: Einstellung Netzfrequenz

0 Netzfrequenz

Einstellung auf 50Hz oder 60Hz Netzfrequenz.

6.3.5 Assistent: Einstellung Spannungswandler

• prim. Spannung:

Entspricht der primären Nennspannung des Spannungswandlers.

• sek. Spannung:

Entspricht der sekundären Nennspannung des Spannungswandlers.

1

Der Spannungswandlerfaktor wird automatisch berechnet!

Bei Auswahl der PowerQuality Norm fürs Niederspannungsnetz (EN50160-NS & EN50160-NS-IT) wird die Seite Spannungswandler übersprungen, da das Gerät den kompletten Bereich ohne Wandlereinstellungen abdecken kann (0-690 V L-L). Somit ist eine Eingabe nicht notwendig, da kein Spannungswandlerfaktor berechnet werden muss.

6.3.6 Assistent: Einstellung Referenzspannung

Referenzspannung:

Einstellung der Referenzspannung in der Niederspannung

- TN-System als Leiter / Erde Spannung in Volt und in der Niederspannung
- IT-System und Mittel- bzw. Hochspannung als Leiter / Leiter Spannung in Volt.

Die nicht editierbaren Spannungen werden automatisch berechnet.

6.3.7 Assistent: Einstellung Stromwandler

0 prim. Nennstrom:

Primärer Nennstrom des angeschlossenen Stromwandlers.

0 Sek. Nennstrom:

Sekundärer Nennstrom des angeschossenen Stromwandlers.

Der Stromwandlerfaktor wird automatisch berechnet!

6.3.8 Assistent: Einstellung Wandlerfaktor Zubehör

0 Wandlerfaktor Zubehör:

Einstellung des Wandlerfaktors der Rogowskispulen bzw. Stromzangen, die an den Stromeingang angeschlossen werden.

Die Seite wird bei multimess F144-PQ mit den Merkmalen C30 und C31 ausgeblendet.

6.3.9 Assistent: Einstellung Anlagenstrom

• Anlagenstrom:

Einstellung des Nennstroms der Anlage.

1

Nach der Beendigung des Inbetriebnahme-Assistenten wird der Wandlerfaktor mit dem Kehrwert im Display und der Software angezeigt.

6.3.10 Assistent: Einstellung Datum, Uhrzeit & Zeitzone

Manuelle Eingabe von Datum und Uhrzeit in Lokalzeit und im Anschluss die Zeitzone in der das Gerät installiert wird.

Weiterhin muss eingestellt werden, ob das Gerät die Sommer / Winterzeitumstellung intern berechnet (INT = interne Berechnung)

Nach IEC61000-4-30 ist eine externe Synchronisationsquelle wie NTP / DCF77 / GPS erforderlich.

6.3.11 Assistent: Einstellung Kommunikationseinstellungen

O DHCP:

DHCP deaktiviert: Das Messgerät wird mit einer fest im nächsten Schritt zu vergebenden IP-Adresse verwendet.

DHCP aktiviert: Das Messgerät erhält seine IP-Adresse über einen im Netzwerk vorhandenen **DHCP** Server

0 IP-Adresse: Eingabe einer festen IP-Adresse nach IT-Vorgabe

0 Subnetzmaske:

Eingabe der Subnetzmaske

0 Gateway: **Eingabe eines Gateways**

Ab Firmware-Version v2.6.0 unterstützt das multimess F144-PQ die Address Conflict Detection (ACD). Daher können bereits vergebene IP-Adressen des Subnetzes nicht verwendet werden. In diesem Fall muss der Assistent erneut durchgeführt werden. Zur Deaktivierung dieser Funktion sind

Hinweise in der Anleitung WinPQ lite in Abschnitt 2.5.2 zu finden.

Das multimess F144-PQ wird in der Werkseinstellung mit der IP-Adresse 192.168.56.95 und der Subnetzmaske 255.255.0.0 ausgeliefert.

6.3.12 Assistent: Einstellung Betriebsmodus

O Security Mode:

Aktiv: Hochsicherheitsmodus

Das Gerät wird im Sicherheitsmodus eingerichtet. Die Kommunikation wird verschlüsselt sowie der Gerätezugriff geschützt. Der Abschluss der Inbetriebnahme des Sicherheitsmodus erfordert die Einrichtung der dafür notwendigen Benutzerkonten und muss mit der Software WinPO oder WinPO lite mit Version 5.0 oder höher erfolgen. Alle Details zu Verschlüsselungstechnologie etc. sind in der Sicherheitsdokumentation beschrieben

Inaktiv: Kompatibilitätsmodus

Die Einrichtung von Geräten im Kompatibilitätsmodus hat einen nicht IT-sicheren Betrieb des Messgerätes zur Folge, falls keine anderen Maßnahmen zur Verschlüsslung der Verbindung im eingesetzten Netzwerk vorhanden sind (z.B. VPN- Lösungen mit Verschlüsselung / abgetrenntes Netzwerk o.ä.), da weder die Kommunikation zwischen WinPQ Software und dem PO-Gerät verschlüsselt wird noch der Gerätezugriff geschützt ist. Dieser Modus ist für die Kompatibilität mit WinPQ Systemen kleiner Version 5 vorgesehen und Systeme mit WinPO Versionen 5 oder höher sollten im Hochsicherheitsmodus betrieben werden

Notieren Sie sich in jedem Fall die Seriennummer Ihres Messgerätes!

wird bei

i	Bei gesteckter SD-Karte wird be Geräteneustart eine Identifka- tionsdatei mit den benötigten Zertifikaten für die Erkennung des Gerätes beschrieben im Stammverzeichnis der SD Karte abgespeichert

26445_EDEBDA0306-1324-1_DE

Im aktiven Security Modus wird empfohlen, zusätzlich zur Verschlüsselung auch das Display mit einem Passwort zu versehen.

6.3.13 Assistent: Abschluss der Inbetriebnahme

0 Einstellungen übernehmen:

An dieser Stelle können alle Einstellungen für das Gerät übernommen werden oder der Einrichtungsassistent abgebrochen werden.

Bei Abbruch des Assistenten wird der Assis-tent bei jedem Geräteneustart immer wieder erscheinen, da die notwendigen Grundeinstellungen nicht vorgenommen wurden.

Mit der Bestätigung "Ja"

- 0 startet das Gerät neu,
- 0 übernimmt das Gerät alle Änderungen,
- 0 löscht das Gerät alle alten Messdaten im Gerätespeicher,
- 0 werden viele Parameter auf Werkseinstellungen zurückgesetzt.

Die Messkampagne wird nach dem Neustart gestartet, alle Rekorder sind aktiv.

6.4 Displayfunktionen

Das Farbdisplay des Geräts liefert Informationen über die richtige Verbindung der Messkabel und Messwandler und zeigt Online-Daten von Spannungen, Ströme, Gesamte Harmonische Verzerrung (THD), Leistungswerten und Energie. Sowie die Balkendiagramme für Spannungsund Stromharmonische.

Durch Drücken der Tasten "rechts", "links" Seite der Displayebene.

auf dem Tastenfeld wechselt die

Durch Drücken der Tasten "oben", "unten"

grafischen Displayseiten gewechselt. Mit den Tasten "rechst", "links" auf den Tastenfeld wechselt die Seite des grafischen Displays.

Wenn keine Taste betätigt wird, schaltet der Bildschirm nach 5 Minuten in den Ruhemodus.

6.4.1 Nummerischer Display

Folgende Bildschirmseiten liefern Online-Informationen der Messdaten in nummerischer Form:

Display Seite 1

U, I, P				
	L1	L2	L3	N/Σ
U M	0.079	0.053	0.053	0.052
I IAI	25.99	68.58	26.32	98.23
P IM	-0.289	+0.424	-0.215	-0.080
THD U 🕅	0.000	0.000	0.000	0.000
THD I IN	0.000	0.000	0.000	0.000
F (Hz)	0.000			

0 Leiter-Erde Spannungen

auf dem Tastenfeld wird zu den

- 0 Ströme L1, L2, L3, N-Leiter
- 0 Wirkleistungen mit Vorzeichen (+/-)
- O Verzerrungsfaktor der Spannun- gen und Ströme (Total Harmonic Distortion). Die THD-Berechnung H2 bis H40 bzw. H2 bis H50 ist einstellbar.
- 0 Netzfrequenz

ULA			
	L12	L23	L31
U M	0.054	0.013	0.045
Extremwerte U L-L	[10min]		
Umax 7T M	0.064	0.020	0.051
Umin 7T M	0.051	0.008	0.039
Umax M	0.064	0.020	0.051
Umin IVI	0.000	0.000	0.000

- 0 Leiter-Leiter Spannungen & Extremwerte Leiter-Leiterspannung der gewählten Datenklasse in folgenden Zeiträumen
- 0 7 Tage
- 0 Gesamte Messzeitraum, seit dem letzten Zurücksetzen

Die gewünschte Datenklasse ist über das Setup-Display oder die Software einzustellen (siehe Kapitel 6.5.4 und Einstellungen bzw. 7.5.3.9 Statistik)!

Die vorgenommene Einstellung ist für alle Statistikwerte (Spannungs-Maximalwert, Spannungs-Minimalwert und Strom-Maximalwert) identisch.

Die Extremwerte sind über das Display rücksetzbar.

Display Seite 3

P, Q	P, Q, S					
			L2	L3	Total	
S	[VA]	2.328	3.651	1.430	7.376	
Q	[VAR]	2.321	3.646	1.408	7.375	
P	[W]	+0.175	+0.198	-0.249	+0.125	
D	[VAR]	2.321	3.646	1.408	7.375	
PF		1.000	1.000	1.000	1.000	
cos	phi	1.000	1.000	1.000	1.000	

- 0 S: Scheinleistung
- 0 Q: kollektive Blindleistung (vor- zeichenlos)
- 0 P: Wirkleistung
- 0 D: Verzerrungsblindleistung
- 0 PF: Power Faktor (Wirkleistung /Scheinleistung)
- 0 Cos phi: Wirkfaktor

ULL			
	L12	L23	L31
U M	0.054	0.013	0.045
Extremwerte U L-L	. [10min]		
Umax 7T M	0.064	0.020	0.051
Umin 7T M	0.051	0.008	0.039
Umax M	0.064	0.020	0.051
Umin M	0.000	0.000	0.000

0 Lirkenergie gesamt

0 Wirkenergie bezogen (positives Vorzeichen)

- 0 Wirkenergie geliefert (negatives Vorzeichen)
- 0 Blindenergie gesamt
- 0 Blindenergie bezogen (positives Vorzeichen)
- 0 Blindenergie geliefert (negatives Vorzeichen)

Imax [10min]					
			L2	L3	N/Σ
	[A]	0.000	0.000	0.000	0.000
Imax 1T	[A]	0.000	0.000	0.000	0.000
Imax 7T	[A]	0.001	0.001	0.003	0.002
Imax 30T	[A]	0.001	0.001	0.003	0.002
Imax	[A]	0.001	0.001	0.003	0.002

0 Strom und Strom Maximalwerte der gewählten Datenklasse in folgenden Zeiträumen im jeweiligen Zeitbereich:

- 0 des letzten Tages
- 0 der letzten 7 Tage
- 0 der letzten 7 Tage
- 0 der gesamten Messzeit

Die Extremwerte sind über das Display rücksetzbar.

Display Seite 6

RCM		RCM 🧶
IR [mA]		0.000
Warnschwelle	[mA]	10.00
Alarmschwelle	[mA]	18.00

- SIR: Differenzstrom in [mA] 0
- 0 Warnschwelle: Schwelle für Zustand Warnung in [mA]
- 0 Alarmschwelle: Schwelle für Zustand Alarm in [mA]

Das nummerische Display wird nur bei aktiver RCM-Funktion angezeigt!

26445_EDEBDA0306-1324-1_DE

Display Seite 5

Recorder			
	1T	7T	30T
Oszillcskop	0	0	0
RMS	0	0	0
PQ-Events	126	816	3432

Die Anzahl der aufgetretenen PQ-Ereignisse, Oszillograph- und Effektivwertaufzeichnunen für den letzten Tag, die letzte Woche und den letzten Monat erscheinen auf dem Gerätedisplay.)

Der Umbruch der Ereigniszähler ist jeweils zum Tageswechsel um 24:00 r.

Display Seite 8

Geräteinformation		0 Aktuelle Firmware multimess F144-PQ
Firmware	2.0.0	0 Datum & Uhrzeit vom Gerät
Build	13983	
Datum	06.08.19	0 Serien- & Artikelnummert
Uhrzeit	13:19:32	
S/N	19025758	
(A/N	1197801	

Display Seite 9

Aktive Gerätelizenz wird angezeigt.

Beispielgerät hat Lizenz 40 kHz-Abtastrate und die Möglichkeit per Leittechnikanbin- dung IEC60870-5-104 angebunden zu werden.

Sicherheit

RSA2 Fingerprint (md5) 79:c4:3f:b5: 0d:ac:a3:85: 7d:83:fa:3b: 7f:c1:fe:5e

ECDSA Fingerprint (md5) ac:52:9a:65: cd:e0:fa:6d: 8c:6c:d1:78: a0:93<u>:c4:4d</u> SSH RSA Fingerprint des Public Keys des multimess F144-PQ zur Verifikation bei Verbindung über die Software WinPQ lite / WinPQ.

SSH ECDSA Fingerprint des Public Keys des multimess F144-PQs zur Verifikation bei Verbindung über die Software WinPQ lite / WinPQ.

6.4.2 Grafisches Display

Mit den Tasten "oben", "unten" auf dem Tastenfeld kann ins Auswahlmenü des grafischen Displays gewechselt werden. Mit den Tasten "links", "rechts" auf dem Tastenfeld kann die Messgröße ausgewählt und mit der "Enter" Taste aktiviert bzw. deaktiviert werden. Mit der Taste "unten" auf dem Tastenfeld wird

ins Balkendiagramm gewechselt. Mit den Tasten "links", "rechts" kann die gewünschte Harmonische ausgewählt werden. Durch Betätigung der Taste "Enter" werden die Messdaten der ausgewählten Harmonischen unterhalb der Legende angezeigt. Die ausgewählt Harmonische ist durch einen

Punkt unterhalb des Balkendiagramms gekennzeichnet. Durch die Taste "Return" ² wird das Auswahlmenü verlassen.

6.4.2.1 Bereich Balkendiagram

Folgende Bildschirmseiten liefern Online-Informationen der Messdaten in grafischer Form:

Display Seite 1

Die Darstellung der Balkendiagramme ist abhängig von der ausgewählten Netzform:

- 0 Netzform 4-Leiter: Balkendiagramme Spannungsharmonische H2 – H26 für L1, L2, L3 und N.
- 0 Netzform 3-Leiter: Balkendiagramme Spannungsharmonische H2 – H26 für L12, L23 und L31.

Die roten Grenzlinien symbolisieren den Grenzwert der jeweiligen Spannungsharmonische nach EN50160.

Die Darstellung der Balkendiagramme ist abhängig von der ausgewählten Netzform:

- 0 Netzform 4-Leiter: Balkendiagramme Spannungsharmonische H26 – H50 für L1, L2, L3 und N.
- 0 Netzform 3-Leiter: Balkendiagramme Spannungsharmonische H26 – H50 für L12, L23 und L31.

Die roten Grenzlinien symbolisieren den Grenzwert der jeweiligen Spannungsharmonische nach EN50160.

0 Balkendiagramme Stromharmonische H2 – H26

Display Seite 2

Display Seite 3

[A]

Harmonische I (2 - 26)

⊠L1 1.540

2.420

5.626

2.560

0 Balkendiagramme Stromharmonische H26 – H50

Display Seite 5

0 Balkendiagramme Spannungsharmonische 2 – 9 kHz.

Die Balkendiagramme für die Frequenzbänder 2 – 9 kHz
werden nur mit Geräteoption
B1 angezeigt.

Display Seite 6

- 0 Balkendiagramme Stromharmonische 2 – 9 kHz.
 - Die Balkendiagramme für die Frequenzbänder 2 – 9 kHz werden nur mit räteoption B1 angezeigt.

6.4.2.2 Bereich Detailinformationen

Display Seite 1: Vektordiagramm

- 0 Spannungsvektor U1E, U2E, U3E.
- O Stromvektoren I1, I2, I3

Zusätzlich nummerische Anzeige:

- 0 Phasenlage jeweiliger Spannungsvektor
- 0 Phasenverschiebung Strom- Spannung

Display Seite 2: Stati der Binär ein- und -ausgänge

Stati Binäreingänge und -ausgänge 🛛 🕯			
	Binäreingang	Binärausgang	
1	🔵 aus	🔴 ein	
2	🔵 aus	🔵 aus	
3	🔵 aus	🔵 aus	
4	🔵 aus	💮 aus	
5	🔵 aus		
6	🔵 aus		
7	🔵 aus		
8	🔵 aus		

- 0 Zustand der acht Binäreingänge
- 0 Zustand der vier Binärausgänge

Display Seite 3: Zeitverlauf RCM/FCM

Zeitlicher Verlauf des Differenz- und Fehlerstroms (RCM/FCM) der letzten 7 Tage

Auswählbare Kennlinien:

- 0 Differenzstrom (IRCM)
- 0 Fehlerstrom (IFCM)

Grenzwerte:

- 0 Warnschwelle
- O Alarmschwelle

6.4.3 Pop-Up-Anzeige für Meldungen zur Differenzstrommessung

Nach DIN EN 62020 besteht die Aufgabe eines Differenzstrom-Überwachungsgerätes (RCM) darin, eine elektrische Installation oder einen Stromkreis auf das Auftreten eines Differenzstromes zu überwachen und durch einen Alarm anzuzeigen, wenn dieser einen festgelegten Wert überschreitet.

Nachfolgend wird in diesem Kapitel auf die unterschiedlichen Pop-Up Anzeigen eingegangen, die für die RCM-Funktion implementiert wurden. Bitte beachten Sie auch das Whitepaper "Differenzstrommessung" der Firma KBR GmbH.

Die Parametrierung der RCM-Funktion wird in Kapitel 6.5.2 detailliert behandelt.

6.4.3.1 Pop-Up-Anzeige Alarmmeldung

Display Pop-Up-Anzeige Alarmmeldung

Bei Überschreitung der eingestellten Alarmschwelle (siehe Kapitel 6.5.2) muss nach DIN EN 62020 eine optische Alarmmeldung im Display erscheinen.

Zusätzlich zur optischen Meldung kann ein Binärausgang geschalten werden, um z.B. ein akustisches Signal auszugeben. Die Parametrierung des Binärausgangs wird in Kapitel 7.5.3.6 beschrieben.

Mit der Taste "Eingabe" 🛃 auf dem Tastenfeld kann ins Quittierungsmenü der Alarmmeldung gewechselt werden.

Display Quittieren Alarmmeldung

Quittierung RCM-Meldung	RCM 🔵	In diesem Display können die optische	
Binärausgang zurücksetzen Optische Meldung zurücksetzen	2/2	Meldung sowie die Binarausgange zurückgesetzt werden.	
		Die optische Meldung kann nach DIN EN 62020 erst zu- rückgesetzt werden, wenn die Alarmschwelle nicht mehr verletzt wird.	

6.4.3.2 Pop-Up-Anzeige Warnmeldung

Display Pop-Up-Anzeige Warnmeldung

Bei Überschreitung der eingestellten Warnschwelle (siehe Kapitel 6.5.2) kann nach DIN EN 62020 eine optische Alarmmeldung im Display ausgegeben werden.

Zusätzlich zur optischen Meldung kann ein Binärausgang geschalten werden.

Mit der Taste "Eingabe" 🛃 auf dem Tastenfeld kann ins Quittierungsmenü der Alarmmeldung gewechselt werden.

Display Quittieren Warnmeldung

Quittierung RCM-Meldung	RCM 🔵	In diesem Display können die optische Meldung sowie die Binärausgänge
Binärausgang zurücksetzen Optische Meldung zurücksetzen	2/2	zurückgesetzt werden.
		Die optische Meldung kann nach DIN EN 62020 jederzeit zurückgesetzt werden, auch wenn die Warnschwelle noch verletzt ist.

6.4.3.3 Pop-Up-Anzeige Fehlermeldung

Display Pop-Up-Anzeige Fehlermeldung

 RCM
 Beim Auftreten eines Fehlers (z.B. Drahtbruch beim Differenzstromwandler) wird eine Fehlermeldung ausgegeben.

 FEHLER
 Zusätzlich zur optischen Meldung kann ein Binärausgang geschalten werden.

Mit der Taste "Eingabe" 🛃 auf dem Tastenfeld kann ins Quittierungsmenü der Alarmmeldung gewechselt werden.

Display Quittieren Fehlermeldung

Die Fehlermeldung wird mit Behebung des Fehlers automatisch zurückgesetzt.

6.5 Setup-Display

Durch Drücken der Taste 🔁 auf dem Tastenfeld wechselt das Displays in das Setup-Menü. Folgende Hauptmenüs stehen im Setup zur Verfügung:

Setup	1/7
Zeiteinstellung Grundeinstellung Speicherverwaltung Schnittstellen SCADA Display	

6.5.1 Parameter

1 Parameter Seite 1

Parameter	1/8
Netzform	4 Leiter, 3-phasig
Netzfrequenz [Hz]	50
Spannungswandler	1.00
Stromwandler	900001.00
Nennspannung [V]	230
Referenzspannung [%]	100.000
Referenzspannung [V]	398.37
Nennstrom [A]	5

1 Netzform

Die Eingabe der Netzform 3-Leiter-Netz, 4-Leiter-Netz, 3-phasig bzw. 4 -Leiter-Netz, 1-phasig bestimmt die Erfassung der Power Quality Ereignisse.

Auswahl zwischen 3- und 4-Leiter-Netz.

In einem 3-Leiter-Netz werden alle Power Quality Ereignisse aus den Leiter-Leiter Spannungen berechnet.

In den 4-Leiter-Netzen, werden alle Power Quality Ereignisse aus den Leiter-Erde Spannungen ermittelt.

1 Netzfrequenz

Einstellung auf 50 Hz oder 60 Hz Netzfrequenz.

1 Spannungswandler

Entspricht dem Verhältnis zwischen Primär- und Sekundärspannung. Beispiel: primär = 20.000 V / sekundär = 100 V; Wandlerfaktor = 200

1 Stromwandler

Entspricht dem Verhältnis zwischen Primär- und Sekundärstrom. Beispiel: primär = 100 A / sekundär = 5 A; Wandlerfaktor 20

1 Nennspannung / Referenzspannung

Der angezeigte Wert der Nennspannung beträgt:

- 0 Im 4-Leiter-Netz = 230 V Leiter-Erde Spannung
- 0 m 3-Leiter-Netz entspricht es den eingestellten Primärwert des Spannungswandlers Über den %-Wert kann die Referenzspannung abweichend gegenüber der Nennspannung eingestellt werden.

Beispiel 1: 20.000 V * 105% = Referenzspannung 21.000 V. Dies ist der Referenzwert für alle Triggerschwellwerte, sowie Power Quality Ereignisse.

Beispiel 2: 500 V Netz (Leiter-Leiter): 230 V * 125 % = 287,5 V (Leiter-Erde)

1 Nennstrom

Der Nennstrom entspricht dem eingestellten Anlagenstrom aus dem Inbetriebnahme-Assistent (siehe Kapitel 6.3).

1 Referenzkanal

Parameter		6/8
	U1N	
Leistungsmessung Flicker-Lampe	Standard 230V	

Der Referenzkanal legt den Messkanal für die Frequenzmessung und Netzsynchronisation fest. Alle Phasenwinkel werden auf diesen Kanal bezogen.

1 Leistungsmessung

Die Leistungsberechnung in der Gerätefirmware kann zwischen zwei Messfunktionen ausgewählt werden:

- O Leistungsberechnung nach DIN40110-Teil 2 mit Berechnung der Unsymmetrie- Blindleistung.
- **0** Vereinfachte Leistungsberechnung ohne Beachtung der Unsymmetrieblindleistung in den 3-Phasenleistungen (Standard).

Diese Einstellung hat Einfluss auf die Leistungsmesswerte im Gerätedisplay, die Onlinemesswer- te und die aufgezeichneten Messdaten. Die Unsymmetrieblindleistung spielt eine Rolle bei großer Stromunsymmetrie am Messpunkt.

6.5.2 Differenzstrom Messeingang / RCM

Die Funktion RCM ist standardmäßig deaktiviert. Durch Betätigen der Taste "Eingabe" 🛃 kann die Funktion aktiviert werden.

RCM	
	1/10
Status	aktiviert
Wandlerfaktor Differenzstrom	600.00
Auswahl überwachter Strom	IRCM
Bemessungs-Ansprech-Diff.strom IRN [mA]	300.00
Diff.strom-Warnschwelle [mA]	150.00
Diff.strom-Alarmschwelle [mA]	300.00
Steigung Anstiegsgerade [mA/kW]	100
Maximaler Schwellenstrom [mA]	600.00

RCM		
		9/10
Zeitverzögerung RCM-Zustandswechsel Alle Binärausgänge quittieren	[s]	3

Mit Aktivierung der Funktion RCM werden zusätzlich automatisch die Langzeitaufzeichnung sowie die Störschriebaufzeichnung bei Überstrom des Differenzstroms mit aktiviert.

1 Wandlerfaktor Differenzstrom

Parametrierung des Wandlerfaktors des Differenzstromwandlers.

Bei Verwendung des Differenzstromwandlers mit der Artikelnummer 111.7097.020 ist folgender Wandler- faktor Differenzstrom einzustellen:

0 600

1 Bemessungs-Ansprech-Diff.strom [A]

Einstellung des Bemessungs-Ansprech-Differenzstroms bei dem das RCM unter festgelegten Bedingungen ansprechen muss.

Nach DIN EN 62020 sind Vorzugswerte des Bemessungs-Ansprechdifferenzstroms:

0 0,006 – 0,01 – 0,03 – 0,1 – 0,3 – 0,5 A

1 Auswahl überwachter Strom

Auswahl, ob der Differenz- (IRCM) oder der Fehlerstrom (IFCM) überwacht werden soll.

1 Diff.strom-Warnschwelle [mA]

Festlegung der Warnschwelle

1 Diff.strom-Alarmschwelle [mA]

Festlegung der Alarmschwelle

1 Steigung Anstiegsgerade [mA/kW]

Optionale Festlegung eines Koeffizienten für eine lineare Anstiegsgerade der Schwellen. Eine ausführliche Erläuterung dazu ist in Abschnitt 7.4.9 zu finden.

1 Maximaler Schwellenstrom [mA]

Festlegung des maximalen Schwellenstroms bei Nutzung der linearen Anstiegsgerade.

1 Zeitverzögerung RCM-Zustandwechsel [s]

Einstellung einer Zeitverzögerung zwischen den RCM-Zustandswechsel.

1 Alle Binärausgänge quittieren

1

Zurücksetzen aller Binärausgänge auf den Ausgangszustand.

Nach Aktivierung der Funktion RCM wird das multimess F144-PQ neugestartet. Die Differenzstrommessung beginnt automatisch nach dem Neustart.

Dies ist durch die Visualisierung

im Gerätedisplay ersichtlich.

Die Parametrierung zur Differenzstrommessung mit der WinPQlite ist in Abschnitt 7.4.9 beschrieben.

6.5.3 Zeiteinstellungen

Das multimess F144-PQ verfügt über vielfältige Möglichkeiten die Zeit im Gerät auf die Weltzeituhr zu synchronisieren. KBR empfiehlt in jedem Fall eine hochgenaue Zeitsynchronisationsvariante zu wählen und auch die Güte des Zeitsignales zu berücksichtigen.

6.5.3.1 Zeiteinstellung DCF77

Das Messgerät kann über eine externe DCF77-Uhr die Zeit beziehen (Deutschland / Österreich eingeschränkt / Schweiz eingeschränkt). Im Menü müssen hierzu folgende Einstellungen vorgenommen werden.

Zeitprotokoll des multimess F144-PQ auf eine externe DCF77 Funkuhr stellen.

Einstellungen des Schnittstellen-Typ auf RS232/RS485 sowie die Zeitzone des externen DCF-Signales.

6.5.3.2 Anschluss DCF77 Funkuhr

Es empfiehlt sich die COM2 Schnittstelle als Zeitsynchronisationsschnittstelle zu verwenden. Um die DCF Uhr ans multimess F144-PQ anzuschließen sind folgende Verdrahtungen notwendig:

Bild	COM	Klemme.	Funktion	DCF Uhr Adern Beschreibung
Term		77	RS485 Pos (A)	
		76	RS485 Neg (B)	
CON	(X7)	75	CTS	
A COCO	M 1 (74	RxD	
	G	73	GND	
		72	RTS	
Tem.		71	TxD	
		87	RS485 Pos (A)	
OM2		86	RS485 Neg (B)	
* 1	X8)	85	CTS	
A LO HO	И 2 (84	RxD	grüne Ader der DCF-Uhr = Taktsignal
/	CO	83	GND	weiße Ader der DCF-Uhr = GND
Ť.		82	RTS	rote Ader der DCF-Uhr = +6 V
		81	TxD	schwarze Ader der DCF-Uhr = -6 V

- 0 Schnittstellen-Typ auf RS232 parametrieren
- 0 Zeitzone extern: +1 -da DCF-Signal mit Lokalzeit (Frankfurt) kommt
- 0 Zeitzone intern: +1 -damit das Gerät intern die Zeit korrekt im Display anzeigt (Lokalzeit)

6.5.3.3 Zeiteinstellung Manuell

Zeiteinstellung	1/6	0 Zeitprotokoll:
Zeitprotokoll Zeitzone intern DST DST-Umstellung Datum Uhrzeit	Manuell +01:00 INT 28.05.19 08:03:09	 Manuell: Die Zeiteinstellung wird manuell am Gerät vorgenommen. Zeitzone intern: Festlegung der Zeitzone in dem sich das Gerät befindet
		0 DST INT: Die Sommer- / Winterzeiteinstel-
Das multimess F144-PQ rechnet intern über die eingegebenen Uhrzeiten sowie der eingegeben Zeitzonen die Zeiten in das UTC Format um. Alle Messwerte werden mit UTC Zeitstempel gespeichert. Es empfiehlt sich daher, die Zeitzonen korrekt einzugeben		lung wird vom Gerät intern ermittelt AUS: Sommer- / Winterzeiteinstellung ist ausgeschaltet
		 Datum: Eingabe des lokalen Datums Uhrzeit: Eingabe der aktuellen
Zeitzohen korrekt einzuge		Iokalen omzen

6.5.3.4 Sommer-Winterzeitumstellung (DST – Daylight Saving Time)

Ist die Betriebsart Sommerzeit auf intern eingestellt, erfolgt die Sommer-/Winterzeitumstellung im multimess F144-PQ automatisch jedes Jahr. Das multimess F144-PQ verwendet einen internen Algorithmus mit den folgenden drei Parametern:

DST-Umstellung	1/6
Winter auf Sommer	
Datum	31.03.
Uhrzeit	02:00
Wochentag	Sonntag
Sommer auf Winter	
Datum	27.10.
Uhrzeit	03:00
Wochentag	Sonntag

Menü zur Einstellung der Parameter für Sommerzeitänderungen.

- 0 Datum: Dies ist nicht spezifisch das Datum der nächsten Änderung, sondern eine Methode, um die Woche in dem Monat anzugeben, in dem die Änderung stattfinden soll. Beachten Sie die folgenden Beispiele.
- **0** Wochentag: Der Wochentag, an dem die Umstellung immer stattfinden soll.
- **0** Uhrzeit: Zeitpunkt, zu dem die Umstellung erfolgt (Beginn der Umstellung).

1 Beispiel 1: Europa – Deutschland

Die Umstellung von Sommer- auf Winterzeit erfolgt immer am letzten Sonntag im Monat Oktober um 03:00 Uhr mit einer Zeitverschiebung zurück auf 02:00 Uhr.

Die Umstellung von Winter- auf Sommerzeit erfolgt immer am letzten Sonntag im März um 02:00 Uhr mit der Zeitverschiebung vorwärts auf 03:00 Uhr.

	Sommer auf Winterzeit	Winter auf Sommerzeit
Datum	25.10	25.03
Wochentag	Sonntag	Sonntag
Uhrzeit	03:00.	02:00.

Mit diesen Parametern wird folgenden Algorithmus im multimess F144-PQ ausgeführt:

Umstellung von der Sommerzeit um 3 Uhr morgens am Sonntag, der am oder nach dem 25.10. stattfindet.

D.h. dem ersten Sonntag, der am oder nach dem 25. des Monats stattfindet. Da es im Oktober 31 Tage gibt, ist der Sonntag, der am oder nach dem 25. stattfindet, immer der letzte Sonntag des Monats Oktober.

Umstellung auf Sommerzeit um 2 Uhr morgens am Sonntag, der am oder nach dem 25.3. stattfindet. D.h. dem letzten Sonnentag des Monats März.

1 Beispiel 2: Australien – New South Wales

Die Umstellung von Sommer- auf Winterzeit erfolgt am ersten Sonntag im Monat April um 03:00 Uhr mit einer Zeitverschiebung zurück auf 02:00 Uhr.

Die Umstellung von Winter- auf Sommerzeit erfolgt immer am ersten Sonntag im Monat Oktober um 2:00 Uhr mit der Zeitverschiebung nach vorne auf 03:00 Uhr.

	Sommer auf Winterzeit	Winter auf Sommerzeit
Datum	01.04	01.10
Wochentag	Sonntag	Sonntag
Uhrzeit	03:00.	02:00.

Diese Parameter stellen für alle zukünftigen Jahre sicher, dass die Umstellung von Sommer- auf Winterzeit vom multimess F144-PQ immer am ersten Sonntag am oder nach dem 01.04. und die Umstellung von Winter- auf Sommerzeit immer am ersten Sonntag am oder nach dem 01.10. automatisch durchgeführt wird.

6.5.3.5 Zeiteinstellung NTP

Das multimess F144-PQ hat die Möglichkeit, sich mithilfe des Network Time Protokoll (NTP) auf einen im Netzwerk vorhandenen NTP-Server zeitlich zu synchronisieren. Der eingesetzte NTP Server sollte eine hohe Zeitsignalqualität liefern können

Eine Synchronisation auf SNTP Server ist möglich und wird aufgrund der hohen Ungenauigkeiten sowieso nicht empfohlen.

Zeiteinstellung		1/5	Zeitprotokoll:
Zeitprotokoll erweitert Zeitzone intern DST DST-Umstellung Datum Uhrzeit	NTP +01:00 AUS 28.05.19 08:06:49	1/8	0 NTP: Die Zeiteinstellung wird über einen im Netzwerk vorhandenen NTP Server durchgeführt Mit dem Klick auf "erweitert" können dieNTP-Server eingegeben werden Das multimess F144-PQ unterstützt bis zu vier Zeitserver im Netzwerk. Das Ge- rät verwendet auto- matisch den NTP- Server mit der höchsten Genauigkeit.
Zeitserver 1 IP Zeitserver 1 Port Zeitserver 2 IP Zeitserver 2 Port Zeitserver 3 IP Zeitserver 3 Port Zeitserver 4 IP Zeitserver 4 Port	0.0.0.0 5040 0.0.0.0 5040 0.0.0.0 5040 0.0.0.0 5040		 O Zeitserver 1 IP: Eingabe der IP-Adresse des Zeitservers O Zeitserver 1 Port: Eingabe des Netzwerk Ports unter welchem das Gerät den NTP-Server erreichen kann

Der Port für den NTP-Server ist, standartmäßig "123"- NTP. Der NTP Server muss vom Gerät erreichbar sein.

Es wird empfohlen einen NTP-Server einzusetzen der ein Mindest-Stratum von 8 besitzt. Alle NTP-Server mit höherem Stratum werden vom Gerät ignoriert.

Siehe hierzu auch: https://de.wikipedia.org/wiki/Network_Time_Protocol

6.5.3.6 Zeiteinstellung NMEA-ZDA

Zeiteinstellung		1/5
Zeitprotokoll	NMEA:ZDA	
erweitert		
Zeitzone intern	+01:00	
DST	AUS	
DST-Umstellung		
Datum	28.05.19	
Uhrzeit	08:09:48	
NMEA-Einstellungen		1/2
NMEA-Protokoll	RS232	
PCM-Protokoll	RS232	

Einrichten der Schnittstelle RS232/RS485 für NMEA Protokoll

6.5.3.7 Zeiteinstellung NMEA-RMCA

6.5.3.8 Zeiteinstellung IRIG-B

Zeitcodes zwischen Instrumentengruppen, allgemein als IRIG-Zeitcodes bekannt, sind Standardformate für die Übertragung von Zeitinformationen. Atomfrequenzstandards und GPS-Empfänger, die für präzises Ti- ming ausgelegt sind, sind häufig mit einem IRIG-Ausgang ausgestattet.

Das multimess F144-PQ besitzt mit der COM2 Schnittstelle eine Möglichkeit, das präzise IRIG B Format für die Uhrzeitsynchronisation zu verwenden.

Am multimess F144-PQ muss das korrekte Format IRIG-BXX0..3 oder IRIG-Bxx4-7 ausgewählt werden, sowie die Angabe der Zeitzone der synchronisierten Uhrzeit, damit das multimess F144-PQ intern die Messdaten mit einem korrekten UTC Zeitstempel speichern kann. Das Format IRIG-BXX0..3 bietet keine Informationen zum aktuellen Jahr, das multimess F144-PQ übernimmt in diesem Fall das Jahr der letzten manuellen Zeiteinstellung.

IRIG-B Formate 0 bis 3

Zeiteinstellung	1/
Zeitprotokoli	IRIG-BXXU3
Zeitzone intern	+01:00
DST	AUS
DST-Umstellung	
Datum	28.05.19
Uhrzeit	08:12:02

IRIGB-Einstellungen		1/
Schnittstellen-Typ	RS232	
Zeitzone extern	+00:00	

IRIG-B Formate 4 bis 7

٦

	1/
IRIG-Bxx47	
+01:00 AUS	
28.05.19 08:12:53	
	1/
RS232	
+00:00	
	IRIG-Bxx47 +01:00 AUS 28.05.19 08:12:53 RS232 +00:00

0 Auswahl des IRIG-B Formates

0 Einrichten der Schnittstelle COM2 und Zeitzone die von der externen IRIG B- Uhr gesendet wird

6.5.3.9 Zeiteinstellung IEEE 1344

IEEE 1344 ist ein Standard, der Parameter für Synchrophasoren für Energiesysteme definiert. Die Standar- derweiterung des IRIG-B-Zeitcodes umfasst Jahr, Zeitqualität, Sommerzeit, Ortszeitversatz und Schaltsekundeninformationen.

Am multimess F144-PQ muss neben dem Protokoll IEEE1344 auch die Schnittstelle ausgewählt werden, sowie die Angabe der Zeitzone der synchronisierten Uhrzeit, damit das multimess F144-PQ intern die Messdaten mit einem korrekten UTC Zeitstempel speichern kann.

Zeiteinstellung		1/5	
Zeitprotokoll erweitert Zeitzone intern DST DST-Umstellung Datum Uhrzeit	NMEA:RMC +01:00 AUS 28.05.19 08:10:46		Zeitsynchronisation auf ein IRIG-B Zeitprotokoll (nach IEEE1344)
IEEE1344-Einstellungen Schnittstellen-Typ Zeitzone extern	RS232 +00:00	1/2	Einrichten der Schnittstelle und Zeitzone

6.5.4 Grundeinstellung

Grundeinstellung	5/8
Sprache Autom. Setup Manü-Passwort	Deutsch
Menü sperren	
Schleppzeiger	10min
Reset Ereignisse	
Reset Energiezähler	
Reset Imax	

0 Sprache:

Auswahl der Displaysprache

O Automatisches Setup:

Diese Funktion führt durch ein automatisiertes Gerätesetup. Diese Funktion wird bei der ersten Inbetriebnahme automatisch gestartet und danach nicht mehr aufgerufen. Mit "Autom. Setup" kann die geführte Inbetriebnahme jederzeit erneut ausgeführt werden.

Beim Ausführen des Autom. Setup werden alle auf dem Messgerät gesicherten Daten gelöscht. Zudem wird die komplette Parametrierung bis auf die selbst vorgenommenen Änderungen im Assistenten auf den Werkszustand zurückgesetzt.

0 Mer	nüpasswort:	0 Schleppzeiger:
Der	Zugang zum Gerätesetup kann über	Auswahl der Datenklasse für die
ein	4-stelliges Passwort gesperrt werden	Extremwerte von Spannung. Folgende
(siel	he Kapitel 6.5.5)	Datenklassen sind auswählbar:
0 Mor	nii sporrop:	0 10/12 Perioden (200ms Intervall)
Mit dieser Funktion sperren Sie das Menü	0 1 Sekunden Intervall	
	0 10 Minuten Intervall	
		0 N Minuten Intervall

Die Extremwerte für Strom und Spannung werden bei Auswahl einer anderen Datenklasse automatisch zurückgesetzt!

- O Reset Ereignisse: Der Ereigniszähler für Störschriebe und PQ-Ereignisse im Gerätedis-play wird auf 0 zurückgesetzt. Alle Messdaten und PQ Ereignisse im Gerätespeicher bleiben erhalten.
- **0 Reset Energiezähler:** Die Energiezähler im Gerätedisplay und im Gerätespeicher werden auf 0 gesetzt.
- 0 Reset Extremwerte: Zurücksetzen der Maximalwerte von Spannung und Strom.

6.5.5 Passwortsperre Gerätedisplay

Der Zugang zum Gerätesetup kann über ein 4-stelliges Passwort gesperrt werden.

Menü-Passwort		
	0000	
	0000	

Wurde ein Passwort vergeben, so ist der Zugang zur Geräteparametrierung über das Display nur nach Eingabe des richtigen Passwortes möglich.

Menü-Pa	asswort
	Falsches Passwort!
	0000

- 0 Passwort mittels den Pfeil-Tasten eingeben
- 0 Entsperren über Enter-Taste betätigen

Das Menu-Passwort hat keinen Einfluss auf die Parametrierung ber die WinPQ lite Software.

6.5.6 Speicherverwaltung

Die Funktion "SD Karte entfernen" stoppt die Kopierfunktion der Messdaten des internen Speichers auf die SD-Speicherkarte und gibt die Karte frei zum Entfernen.

Memory		2/2
Reset recorder		
Remove SD card		
SD sync level SD capacity (free/total)	100% 2.5GB/8.0GB	

6.5.7 CP/IP Schnittstelle einrichten

Das multimess F144-PQ verfügt über eine TCP/IP Schnittstelle zur Kommunikation mit der Client Software WinPQ Lite oder WinPQ. Im Menü Schnittstellen können die notwendigen Parameter gesetzt werden.

Schnittstellen	1/4	O DHCP DHCP aktivieren oder deaktivieren:
DHCP eth0dIP-Adresse1Subnetzmaske2Gateway0	eaktiviert 72.16.3.1 55.255.0.0 .0.0.0	O DHCP deaktiviert: Das Messgerät wird mit einer fest vergebenen IP- Adresse verwendet. Die Vergabe der IP- Adresse wird im nächsten Schritt erläutert.
		O DHCP aktiviert: Das Messgerät erhält seine IP-Adresse über einen im Netzwerk vorhandenen DHCP
Das multimess F144-P0	Q wird in	Server.
IP-Adresse 192.168.56. der Subnetzmaske 255	95 und 955.0.0	1 IP – Adresse / Subnetzmaske / Gatewayl
ausgeliefert.		Eingabe einer freien IP-Adresse und
		der dazugehorigen Subhetzmäske und Gateways. Bitte stellen Sie sicher, dass Sie IP-Adressen verwenden die

im selben Subnetz wie Ihr PC liegen, wenn Sie direkt vor Ort mit dem Gerät kommunizieren möchten.

6.5.8 Display

Im Menü Display kann das Displayverhalten des multimess F144-PQ angepasst werden..

Display		1/4
(Helligkeit [%] Standby [s] Helligkeit im Standby [%] Bildschirmschoner	70 900 10 deaktiviert	

Das multimess F144-PQ wird in der Werkseinstellung mit der Displayhelligkeit von 70%, einer Standby-Zeit von 900 Sekunden und der Displayhelligkeit im Standby von 10% ausgeliefert.

1 Helligkeit [%]

Anpassung der Displayhelligkeit in 1-Prozent-Schritten von 10% bis 100% möglich.

1 Standby [s]

Einstellung der Standby-Zeit in 1-Sekunden-Schritten von 60 Sekunden bis 9999 Sekunden möglich. Nach Ablauf der Standby-Zeit wird die eingestellte Helligkeit im Standby am Display aktiv.

- 1 Helligkeit im Standby [%] Anpassung der Displayhelligkeit im Auswahl der Datenklasse für die Extremwerte von Spannung. Folgende Datenklassen sind auswählbar:
- 1 Bildschirmschoner] Bildschirmschoner aktivieren oder deaktivieren.

Der Standby-Betrieb kann durch Betätigung einer beliebigen Taste verlassen werden.

6.6 Displaysperre

Das Gerätedisplay vom multimess F144-PQ lässt sich durch ein fünf sekündliches Drücken der Tastenkombination "Return" und "Home" n komplett sperren.

Bei Aktivierung der Sperre wird das Display des Geräts komplett ausgeschalten. Eine Anzeige der Displayfunktionen, sowie des Setup-Displays ist nicht mehr möglich.

Bei Betätigung einer beliebigen Gerätetaste wird folgender Hinweis angezeigt:

Zur Entsperrung des Displays ist die Tastenkombination "Return" und "Home" neut fünf Sekunden zu drücken.

7 Modbus

Folgende Datenklassen stehen im Netzanalysator über Modbus TCP oder Modbus RTU zur Verfügung:

Datenklasse	Messwerte	Functioncode
10 ms	Alle Messwerte	Read Holding Register
200 ms	Alle Messwerte	Read Holding Register
1 sec	Alle Messwerte	Read Holding Register
3 sec	Alle Messwerte	Read Holding Register
N sec	Alle Messwerte	Read Holding Register
10 min	Alle Messwerte	Read Holding Register
N min	Alle Messwerte	Read Holding Register
2 h	Alle Messwerte	Read Holding Register

Die verfügbaren Messwerte je Datenklasse werden im Technischen Datenblatt des Gerätes aufgeführt.

Zudem können folgende Ereignisse via Modbus abgefragt werden:

Ereignis	Funktionscode
Meldungen (2 Binärein- und -ausgänge, Trigger-Befehl, 32 Überwachungszustände)	Read Coils
Fortlaufender Zähler zu Rekordern und PQ-Ereignissen	Read Coils
Parametrierung (Modbus-Schreiben für wichtige Einstellur in Rücksprache mit Support	igen),

7.1 Modbus Datenpunktliste

Über Modbus stehen über 10.000 Messwerte des multimess F144-PQ zur Verfügung. Auf Anfrage erhalten Sie die Datenpunktliste von unserem Support auch als Excel-Tabelle.

7.1.1 Modbus Einstellungen über Gerätedisplay

Über das Gerätesetup können Einstellungen der Modbus TCP sowie Modbus RTU Schnittstellen verändert werden.

7.1.2 Modbus RTU

Über das Gerätesetup können Einstellungen der Modbus TCP sowie Modbus RTU Schnittstellen verändert werden.

7.1.3 Modbus TCP

Modbus TCP ist im Auslieferungszustand deaktiviert und kann an dieser Stelle aktiviert werden. Der Port kann parametriert werden. Maximal darf sich ein Client auf den TCP Server verbinden.

7.1.4 Setupeinstellungen Modbus über Software

WinPQ - Schnittstelle (CCCI)	Parametername	Wert	Werkseinstellung
SSH	TCP Server aktiviert		
Gerätebezeichnung	RTU Server aktiviert		
TCP/IP – Einstellungen Lizenzverwaltung	Modbus Gateway benutzen (eig. ID=250)		
Modbus	Modbus Gateway Slave Timeout [ms]	1000	1000
Grenzwerte / Aufzeichnung	TCP Port	502	502
Norm Grenzwerte	TCP Byte-Reihenfolge	Little-Endian	✓ Little-Endian
Anschlusseinstellungen	COM Schnittstelle	COM 1	✓ COM 1
Rekorder Triggerschwellen	RTU Slave ID	17	17
Oszilloskop Rekorder (Trigger & Länge)	RTU Byte-Reihenfolge	Little-Endian	✓ Little-Endian
TRMS Rekorder (Trigger & Länge)	Baudrate	115200	✓ 115200
 Irigger auf Binarausgang Differenzstrommessung 	Parität	gerade	∽ gerade
 Messwertüberwachung 	Schnittstellen Modus	RS232	✓ RS232

Über die Software WinPQ lite können Einstellungen der Modbus TCP sowie Modbus RTU Schnittstellen verändert werden. Die Aktivierung erfolgt über die Parameter TCP oder RTU Server aktiviert (0 = AUS / 1 = EIN).

0 Parameter seriell:

TCP Server aktiviert	Aktivierung von Modbus TCP
COM - Schnittstelle	Auswahl der verwendeten COM- Schnittstelle (COM1 / COM2)
Baudrate	Baudrate der seriellen Schnittstelle für Modbus RTU
Parität	Parität der seriellen Schnittstelle für Modbus RTU
Schnittstelle Modus	Umschaltung zwischen RS232 und RS 485
RTU – Bytereihenfolge	Siehe Kapitel 7.1.6
0 Parameter TCP/IP	
TCP - Port	Änderung des TCP / IP Ports für Modbus TCP / IP
TCP - Bytereihenfolge	Siehe Kapitel 7.1.6

0 Parameter Modbus Gateway

TCP Server aktiviert	Aktivierung von Modbus TCP
Modbus Gateway benutzen	Aktivierung von Modbus Gateway
TCP - Port	Änderung des TCP / IP Ports für Modbus TCP / IP
TCP - Bytereihenfolge	Siehe Kapitel 7.1.6
COM - Schnittstelle	Auswahl der verwendeten COM- Schnittstelle (COM1 / COM2)
Baudrate	Baudrate der seriellen Schnittstelle für Modbus RTU
Parität	Parität der seriellen Schnittstelle für Modbus RTU
Schnittstelle Modus	Umschaltung zwischen RS232 und RS 485
RTU – Bytereihenfolge	Siehe Kapitel 7.1.6

7.1.5 Byte Reihenfolge

Gemäß der Modbus-Spezifikation werden Daten in der Byte-Reihenfolge Big-Endian übertragen. Bezogen auf ein Modbus-Register mit der Größe von 16 Bit werden die Daten auf der Client-Seite ohne Konvertie- rung interpretiert. Folgendes Beispiel verdeutlicht dies am Beispielwert 0x1A2B:

Adresse	Kommunikation (Big-Endian)	Client-Seite (Big-Endian)
High Byte	0x1A	0x1A
Low Byte	0x2B	0x2B

7.1.6 Modbus-Register-Reihenfolge

Bei der Interpretation der Daten, welche mehrere Modbus-Register breit sind (z.B. 32 Bit Unsigned Integer

=> 2 x 16 Bit-Modbus-Register), muss zwischen den Reihenfolgen Little-Endian und Big-Endian unterschie- den werden. Hierbei werden die gesamten Registerinhalte und nicht die Bytes getauscht. In der Standard- Konfiguration wird die Software im Modus Little-Endian betrieben. Folgende Beispiele veranschaulichen die Varianten:

0 32 Bit-Wert 0x1A2B3C4D im Modus Little-Endian:

Adresse	Beispielwert (Big-Endian)	Kommunikation (Little-Endian)	Client-Seite (Big-Endian)
Register 0 High Byte	0x1A	0x3C	0x1A
Register 0 Low Byte	0x2B	0x4D	0x2B
Register 1 High Byte	0x3C	0x1A	0x3C
Register 1Low Byte	0x4D	0x2B	0x4D

0 32 Bit-Wert 0x1A2B3C4D im Modus Little-Endian:

Adresse	Beispielwert (Big-Endian)	Kommunikation (Little-Endian)	Client-Seite (Big-Endian)
Register 0 High Byte	0x1A	0x1A	0x1A
Register 0 Low Byte	0x2B	0x2B	0x2B
Register 1 High Byte	0x3C	0x3C	0x3C
Register 1Low Byte	0x4D	0x4D	0x4D

7.1.7 Datenbits

Standardmäßig ist am Messgerät ein Modbus-Paket mit 8 Datenbits und einem Stopbit aufgebaut.

7.1.8 Datentypen

Die Modbus-Implementierung im multimess F144-PQ arbeitet aktuell mit den nachfolgenden Datentypen.

1 Unsigned Integer 32 Bit (uint32_t)

Dieser Datentyp speichert ganzzahlige Werte ohne Vorzeichen. Entsprechend der Breite von 32 Bit werden sie in zwei Registern gespeichert.

1 Float 32 Bit (float 32)

Gleitkommazahlen vom Typ Float 32 Bit werden entsprechend des Standards IEEE 754 übertragen. Diese werden in zwei Registern gespeichert. Die Interpretation der Werte wird auf https://de.wikipedia.org/wiki/IEEE_754 detailliert beschrieben.

1 Float 64 Bit (double)

Auch Gleitkommazahlen vom Typ Float 64 Bit werden entsprechend des Standards IEEE 754 übertragen. Die Breite von 64 Bit erfordert eine Speicherung in vier Registern. Die Interpretation dieser Werte ist eben- falls auf https://de.wikipedia.org/wiki/IEEE_754 beschrieben.

1 Status (status_t)

Der Status-Wert hat eine Breite von 32 Bit. Er wird entsprechend in zwei Registern gespeichert. Die Bedeu- tung der einzelnen Bits ist in folgender Tabelle aufgelistet:

Bit- Nummer	Bedeutung
0	RVC, Spannung U1E
1	Dip, Spannung U1E
2	Swell, Spannung U1E
3	Unterbrechung, Spannung U1E
4	Übersteuerung, Spannung U1E
5	RVC, Spannung U2E
6	Dip, Spannung U2E
7	Swell, Spannung U2E
8	Unterbrechung, Spannung U2E
9	Übersteuerung, Spannung U2E
10	RVC, Spannung U3E
11	Dip, Spannung U3E
12	Swell, Spannung U3E
13	Unterbrechung, Spannung U3E
14	Übersteuerung, Spannung U3E
15	RVC, Spannung U12

Bit- Nummer	Bedeutung
16	Dip, Spannung U12
17	Swell, Spannung U12
18	Unterbrechung, Spannung U12
19	Übersteuerung, Spannung U12
20	RVC, Spannung U23
21	Dip, Spannung U23
22	Swell, Spannung U23
23	Unterbrechung, Spannung U23
24	Übersteuerung, Spannung U23
25	RVC, Spannung U31
26	Dip, Spannung U31
27	Swell, Spannung U31
28	Unterbrechung, Spannung U31
29	Übersteuerung, Spannung U31
30	Zustand Frequenzsynchronisation
31	reserviert

1 Zeitstempel (uint32_t)

Der 32 Bit breite Zeitstempel wird in zwei Registern gespeichert und muss als ganzzahliger Wert ohne Vor- zeichen interpretiert werden. Es handelt sich hierbei um einen UNIX-Zeitstempel, also die Anzahl seit dem 1. Januar 1970, 00:00 Uhr (koordinierte Weltzeit UTC) vergangenen Sekunden, wobei Schaltsekunden nicht mitgezählt werden.

Am Beispiel eines Wertes:	1478787619 (0x58248223)
Ergibt sich folgender Zeitwert:	11. Oktober 2016 14:20:19 (UTC)

Weitere Informationen sowie ein Implementierungsbeispiel finden sich auf: https://de.wikipedia.org/wiki/Unixzeit

1 Subsekunden (tmFracSec_t)

Der Subsekunden-Wert hat eine Breite von 32 Bit und wird dementsprechend in zwei Registern gespei- chert. Der Datentyp orientiert sich am Zeitformat, welches in IEEE C37.118 definiert ist. Die Bedeutung der einzelnen Bits ist in folgender Tabelle aufgelistet:

Bit- Nummer	Bedeutung
023	Subsekunden in 100 ns Inkrementen
2427	Zeitqualität Indikator
28	Gesetzt als Ankündigung einer Schaltsekunde (1 min vorher)
29	Gesetzt, 24 Stunden lang nach Durchführung einer Schaltsekunde
30	Schaltsekunde hinzufügen (0) oder entfernen (1)
31	Indikator Winterzeit (0) oder Sommerzeit (1)

8. Webserver

Auf dem Messgerät ist ein Webserver implementiert, über den die proprietären Aufzeichnungsdateien vom Gerät heruntergeladen werden können.

8.1 Parametrierung

Der Webserver ist standardmäßig deaktiviert und muss zunächst über die Parametrierung in der Expertenansicht der WinPQlite aktiviert werden.

Die Kommunikation ist technisch sowohl unverschlüsselt via http als auch verschlüsselt über https möglich.

WinPQ - Schnittstelle (CCCI)	Parametername	Wert	Werkseinstellung
Webserver	Webserver aktivieren		
55H	Anzahl Threads	2	2
Gerätebezeichnung	Unverschlüsselte Kommunikation (HTTP) erlauben	1	4
TCP/IP – Einstellungen	HTTP port	80	80
 Lizenzverwartung Modiluit 	Verschlüsselte Kommunikation (HTTPS) erlauben	1	1
 Grenzwerte / Aufzeichnung 	HTTPS port	443	443
Binäraufzeichnung	Name des SSL/TLS Zertifikats	aeberle-cert.pem	seberle-cert.pem
 SCADA-Manager 			
 Speichereinstellungen (Schreiber) 			
Sydog			
 Zeiteinstellung 			
 Nutzerverwaltung 			

8.2 Aufruf und REST-API

Der Aufruf des Webservers ist direkt über die Eingabe der IP-Adresse im Webbrowser möglich:

- 0 Unverschlüsselt: http://<IP-Adresse>
- 0 Verschlüsselt: https://<IP-Adresse>

Dort erscheint eine Landing-Page, welche auf das Listing der Aufzeichnungsdateien verweist. Diese Listings sind abhängig von den getroffenen Einstellungen.

Die Listings werden als json-Dateien angegeben und können für die REST-API zum Download der Dateien verwendet werden. Eine detaillierte Beschreibung zur Verwendung der REST-API wird vom Produktsupport auf Anfrage gerne zur Verfügung gestellt.

9. Messdaten – Messverfahren multimess F144-PQ

Die Aggregation der Messwerte erfolgt nach der Norm IEC61000-4-30 Ed.3 (2015) für Klasse A Geräte.

1 Effektivwerte der Spannungen und Ströme, Min- / Maximalwerte

 U_{eff} / I_{eff}

Der Intervallwert der Spannung oder des Stroms ist der Mittelwert der Effektivwerte (RMS) über die Länge des eingestellten Intervalls.

U_{min./max}.; I_{min./max}.

Pro Messintervall wird der jeweils höchste und niedrigste 10ms Spannungs- oder Stromeffektivwert zusätz- lich zum Mittelwert festgehalten.

1 Rundsteuersignal

U Rundsteuersignal (200 ms)

Im Setup des multimess F144-PQ kann eine beliebige Zwischenharmonische eingestellt werden. Diese wird als 200ms Maximalwert innerhalb eines Messintervalls dargestellt.

1 Flickerstärke P_{st} / P_{lt}

Die Kurzzeit-Flickerstärken Pst (10min) und die Langzeit-Flickerstärken Plt (2h) werden für Stern- und Drei- eckspannungen berechnet. Pst und Plt sind in der EN 61000-4-15: 2010 definiert.

Realisierungsempfehlungen sind der Quelle "EMV Messung von Spannungsschwankungen und Flickern mit dem IEC-Flickermeter" von W.Mombauer, VDE-Verlag, VDE-Schriftenreihe "Normen verständlich", ISBN 3- 8007-2525-8 zu entnehmen.

Formel zur P_{lt} Berechnung:

$$\mathbf{P}_{lt} = \sqrt[3]{\frac{1}{12}\sum_{i=1}^{12}\mathbf{P}_{st,i}^{3}}$$

Das Flickermeter kann im Gerätesetup für folgende Netzkonstellationen parametriert werden: 230 V/50 Hz; 230 V/60 Hz und 120 V/50 Hz; 120 V/60 Hz

1 THD – PWHD – K Faktor

Gesamter Oberschwingungsanteil, die Berechnung erfolgt nach folgenden Formeln gemäß IEC61000-4-7.

Die Berechnung der THD-Werte der Spannungen und Ströme sind im Gerätesetup einstellbar.

- H2 bis H40 (Messung nach EN50160)
- H2 bis H50 (Messung nach IEC61000-x-x)
- **0** THD Spannung:

$$THD_{u} = \frac{\sqrt{\sum_{\nu=2}^{40} U_{\nu}^{2}}}{U_{1}}$$

0 THD Strom in %:

$$THD_i = \frac{\sqrt{\sum_{\nu=2}^{40} I_{\nu}^2}}{I_1}$$

0 THD(A) Strom in Ampere:

$$THC = \sqrt{\sum_{n=2}^{40} I_n^2}$$

0 PWHD - Partial Weighted Harmonic Distortion

Der partiell gewichtete THD bewertet die Harmonischen der 14. bis 40. Harmonischen.

$$PWHD = \frac{\sqrt{\sum_{n=14}^{40} n \cdot C_n^2}}{C_1}$$

0 PHC - Partial Odd Harmonic Current

Der PHC wird aus den ungeradzahligen Stromharmonischen n = 21..39 berechnet.

$$PHC = \sqrt{\sum_{n=21,23}^{39} C_n^2}$$

0 K-Faktor

Die Werte der K-Faktoren werden für Leiterströme aus den entsprechenden Effektivwerten Cn der Harmonischen n = 1.40 berechnet.

K-Faktor ist eine Maßeinheit, welche die Fähigkeit eines Transformators angibt, den Stromharmonischen eines Systems zu widerstehen.

Verschiedene Transformatorlieferanten bieten Transformatoren mit z.B. K-Faktoren von K=4, K=13, K=20 und K=30 an.

Transformatoren werden durch Stromharmonische stärker erwärmt als mit 50 Hz Strömen.

Ein Transformator mit höherem K-Faktor hält diese besser aus und wird nicht so stark erwärmt als ein Transformator mit niedrigerem K-Faktor.

Das multimess F144-PQ gibt den K-Faktor der Ströme an. Interessant sind nur die K-Werte welche bei maximaler Leistung auftreten. Ähnlich wie der THD der Ströme in %, ist der Wert bei sehr niedrigen Strömen nicht relevant.

$$K = \frac{\sum_{n=1}^{40} (n \cdot C_n)^2}{\sum_{n=1}^{40} C_n^2}$$

Harmonische / Zwischenharmonische

Die Ermittlung der Harmonischen- und Zwischenharmonischen-Intervallwerte wird nach den Methoden der Norm IEC61000-4-30 Klasse A basierend auf 10/12 Periodenwerten gebildet.

Das multimess F144-PQ erfasst für alle Spannungs- und Stromkanäle jeweils die Harmonischen bis zur 50. Ordnungszahl. Zur Bewertung der Zwischenharmonischen werden Oberschwingungs-Untergruppen gebildet. Es werden für alle Strom- und Spannungskanäle 50 Untergruppen aufgezeichnet

"IHO" ist die erste Zwischenharmonischen-Gruppe und bewertet den Frequenzbereich von >5 Hz bis <45 Hz.

Es werden die Harmonischen von n=0...50 berechnet Spannungsharmonische (normiert, 10/12 Perioden):

$$U_{hn-10/12} = \frac{\sqrt{\sum_{k=n:N-1}^{n:N+1} U_{n-10/12}^2}}{U_{1-10/12}}$$

Stromharmonische:

$$|I_{n-10/12}| = \sqrt{\frac{1}{2} \cdot \sum_{k=n,N-1}^{nN+1} |C_k|^2}$$

1 Blindleistung / Blindenergien

Im Setup des multimess F144-PQ sind zwei Varianten der Leistungsberechnung einstellbar

0 Leistungsberechnung vereinfacht

Netz-Blindleistung ohne Unsymmetrie-Komponente:

$$Q = \sqrt{Q_V^2 + D^2}$$
 Q₂ = QL1+ QL2 + QL3

1 Messung nach DIN 40110 Teil 2

Blindleistung inklusive der Unsymmetrieblindleistung: Blindleistung:

$$Q_{L-10/12} = Sgn(\varphi_{L-10/12}) \cdot \sqrt{S_{L-10/12}^2 - P_{L-10/12}^2}$$
$$Q_{10/12} = Sgn(\varphi_{1-10/12}) \cdot \sqrt{S_{10/12}^2 - P_{10/12}^2}$$

1 Blindenergie:

"Blindenergie Lieferung" induktiven Blindenergien +EQ:

$$Q_{S}(n) = |Q_{L-10/12}(n)|$$
 für: $Q_{L-10/12}(n) \ge 0$

 $Q_{S}(n) = 0$ für: $Q_{L-10/12}(n) < 0$

"Blindenergie Verbrauch" kapazitive Blindenergien -EQ:

$$Q_{s}(n) = |Q_{L-10/12}(n)|$$
 für: $Q_{L-10/12}(n) < 0$

1 Verzerrungsblindleistungen - D

Die Verzerrungsblindleistung - auch Oberschwingungsblindleistung genannt - beschreibt eine spezielle Form der Blindleistung, die in Wechsel- und Drehstromnetzen durch nichtlineare Verbraucher wie zum Beispiel Gleichrichter in Netzteilen verursacht wird. Die Oberschwingungen des Stromes in Kombination mit der Netzspannung ergeben Blindleistungsanteile, die als Verzerrungsblindleistungen bezeichnet werden.

Die Verzerrungsblindleistungen werden aus den Spannungen und den zugehörigen Verzerrungsströmen berechnet:

$$D = U \cdot \sqrt{\sum_{\nu=2}^{\infty} I_{\nu}^2}$$

1 Leistungsfaktor – Power Faktor PF

Als Leistungsfaktor, Wirkleistungsfaktor oder auch Wirkfaktor bezeichnet man in der Elektrotechnik das Verhältnis von Wirkleistung P zur Scheinleistung S. Der Leistungsfaktor kann zwischen 0 und 1 liegen.

- Das Verhältnis wird in folgender Formel ausgedrückt:

– Leistungsfaktor (Power Faktor PF): $\lambda = IPI / S$

1 Scheinleistungen – S

Im Setup des multimess F1447-PQ sind zwei Varianten der Leistungsberechnung einstellbar

0 Leistungsberechnung vereinfacht

Netz-Scheinleistung ohne Unsymmetrie-Komponente:

$$S = \sqrt{P^2 + Q^2}$$

0 Netzscheinleistung inkl. Netz Unsymmetrie nach DIN 40110 Teil 2

Strang-Scheinleistungen 4-Leiter-System:

$$S_L = U_{LNrms} \cdot I_{Lrms}$$

Strang-Scheinleistungen 3-Leiter-System:

$$S_L = U_{L0rms} \cdot I_{Lrms}$$

Kollektive Scheinleistung n. DIN 40110:

$$S_{\Sigma} = U_{\Sigma} \cdot I_{\Sigma}$$
$$U_{\Sigma} = \frac{1}{2} \cdot \sqrt{U_{12rms}^{2} + U_{23rms}^{2} + U_{31rms}^{2} + U_{1Nrms}^{2} + U_{2Nrms}^{2} + U_{3Nrms}^{2}}$$

4-Leiter-Netz :

$$I_{\Sigma} = \sqrt{I_{1rms}^2 + I_{2rms}^2 + I_{3rms}^2 + I_{Nrms}^2}$$

3-Leiter-Netz, $11 + 12 + 13 \neq 0$:

$$U_{\Sigma} = \frac{1}{2} \cdot \sqrt{U_{12rms}^2 + U_{23rms}^2 + U_{31rms}^2 + U_{1Erms}^2 + U_{2Erms}^2 + U_{3Erms}^2}$$
$$I_{\Sigma} = \sqrt{I_{1rms}^2 + I_{2rms}^2 + I_{3rms}^2 + I_{Erms}^2}$$

Geometrische Grundschwingungs-Scheinleistung :

$$\underline{S}_{G} = 3 \cdot [\underline{U}_{1_PS} \cdot \underline{I}_{1_PS}^{*} + \underline{U}_{1_NS} \cdot \underline{I}_{1_NS}^{*} + \underline{U}_{1_ZS} \cdot \underline{I}_{1_ZS}^{*}]$$

1 Wirkleistung - P

Die Vorzeichen der Wirkleistungen entsprechen der Flussrichtung der Grundschwingungs-Wirkenergie (+: Abgabe, - : Bezug).

Die Werte der Strang-Wirkleistungen werden aus den Abtastwerten eines Synchronisationszyklusses errechnet.

$$P_{L-10/12} = \frac{\sum_{n=1}^{2048} p_L(n)}{2048}$$

200ms Werte)

mit Strangindex $L = \{1, 2, 3, E\}$

Die 10min-Werte werden als lineare Mittelwerte errechnet.

Die kollektive Wirkleistung ist für 4-Leiter-Systeme definiert mit:

$$P_{\Sigma}=P_1+P_2+P_3$$

Die kollektive Wirkleistung ist für 3-Leiter-Systeme definiert mit:

$P_{\Sigma} = P_1 + P_2 + P_3 + P_E$

Grundschwingungs-Wirkleistung (Leitung):

$$P_G = \operatorname{Re}\{\underline{S}_G\}$$

SG = Geometrische Grundschwingungs-Scheinleistung

1 Symmetrische Komponenten

Die komplexen symmetrischen Komponenten werden aus den entsprechenden komplexen Spektralkomponenten der Grundschwingungen der Sternspannungen und Leiterströme errechnet.

Sternspannung im 4-Leiter-System = Spannung Außenleiter-Neutralleiter

Sternspannung im 3-Leiter-System = Spannung Außenleiter-Erde

- Mitsystem:

$$\underline{\underline{U}}_{1_PS} = \frac{1}{3} \cdot \left(\underline{\underline{U}}_{1N-1} + \underline{\underline{a}} \cdot \underline{\underline{U}}_{2N-1} + \underline{\underline{a}}^2 \cdot \underline{\underline{U}}_{3N-1} \right)$$
$$\underline{\underline{I}}_{1_PS} = \frac{1}{3} \cdot \left(\underline{\underline{I}}_{1-1} + \underline{\underline{a}} \cdot \underline{\underline{I}}_{2-1} + \underline{\underline{a}}^2 \cdot \underline{\underline{I}}_{3-1} \right)$$

- Gegensystem:

$$\underline{\underline{U}}_{1_NS} = \frac{1}{3} \cdot \left(\underline{\underline{U}}_{1N-1} + \underline{\underline{a}}^2 \cdot \underline{\underline{U}}_{2N-1} + \underline{\underline{a}} \cdot \underline{\underline{U}}_{3N-1} \right)$$
$$\underline{\underline{I}}_{1_NS} = \frac{1}{3} \cdot \left(\underline{\underline{I}}_{1N-1} + \underline{\underline{a}}^2 \cdot \underline{\underline{I}}_{2N-1} + \underline{\underline{a}} \cdot \underline{\underline{I}}_{3N-1} \right)$$

- Nullsystem:

$$\underline{\underline{U}}_{ZS} = \frac{1}{3} \cdot \left(\underline{\underline{U}}_{1N-1} + \underline{\underline{U}}_{2N-1} + \underline{\underline{U}}_{3N-1} \right)$$
$$\underline{\underline{I}}_{ZS} = \frac{1}{3} \cdot \left(\underline{\underline{I}}_{1N-1} + \underline{\underline{I}}_{2N-1} + \underline{\underline{I}}_{3N-1} \right)$$

26445_EDEBDA0306-1324-1_DE

1 UU Unsymmetrie

Die Spannungsunsymmetrien werden aus den entsprechenden Werten der modalen Komponenten Mitsystem, Gegensystem und Nullsystem errechnet.

Für die EN50160 (Ereignisse) ist nur die Spannungsunsymmetrie uu relevant und entspricht dem Verhältnis von Gegensystem zu Mitsystem. Der Wert wird in [%] ausgegeben.

1 Frequenzanalyse 2 kHz bis 20 kHz

In der Frequenzanalyse werden 2 kHz bis 20 kHz bzw. 200 Hz Frequenzbänder zusammengefasst.

Die Angabe der einzelnen Frequenzen ist die Mittenfrequenz in diesem 200-Hz-Band. In den Aufzeich-nungsdateien selbst können die Supraharmonischen bis 20 kHz aufgezeichnet werden. Bis 18,6 kHz werden die 200 Hz breiten Frequenzbänder nach IEC 61000-4-7 berechnet. Darüber ist die Dämpfung des internen Filters nicht so hoch wie in der Norm angegeben. Daher sind diese Messgrößen mit einem "*" gekennzeichnet.

$$Y_{\rm b} = \sqrt{\sum_{f=b-95\,\rm Hz}^{b+100\,\rm Hz} Y_{\rm C,f}^2}$$

Beispiel: Das Frequenzband 8,9 kHz entspricht allen 5-Hz-Spektrallinien von 8.805 Hz bis 9.000 Hz.

10. Wartung

Dieses Gerät ist für Kunden wartungsfrei.

A GEFAHR!	Lebensgefahr durch Stromschlag
 Gerät nicht öffnen. Wartung des Geräts ausschließlich durch KBR durchführen lassen. 	
Bei Servicefällen die KBR GmbH kontaktieren	

Serviceadresse:	KBR Kompensationsanlagenbau GmbH
	Am Kiefernschlag 7
	D-91126 Schwabach

Reinigung

Verwenden Sie ein weiches, leicht angefeuchtetes und fusselfreies Tuch. Achten Sie darauf, dass keine Feuchtigkeit in das Gehäuse eindringt. Verwenden Sie keine Fensterreiniger, Haushaltsreiniger, Sprays, Lösungsmittel, alkoholhaltige Reiniger, Ammoniaklösungen oder Scheuermittel für die Reinigung. Bitte zur Reinigung nur Wasser verwenden.

11. Entsorgung

Die Entsorgung des Gerätes übernimmt KBR Kompensationsanlagenbau GmbH.

Alle Komponenten an KBR Kompensationsanlagenbau GmbH senden:

KBR Kompensationsanlagenbau GmbH Am Kiefernschlag 7 D-91126 Schwabach

12. Produktgewährleistung

Wir gewährleisten, dass jedes Produkt KBR Kompensationsanlagenbau GmbH KG unter normalem Gebrauch frei von Material- und Fertigungsdefekten ist.

Die detaillierten Bedingungen für die Gewährleistung entnehmen Sie bitte unseren AGB's unter: https://www.kbr.de

Notizen	

KBR Kompensationsanlagenbau GmbH

Am Kiefernschlag 7 D-91126 Schwabach T +49 (0) 9122 6373 - 0 F +49 (0) 9122 6373 - 83 E info@kbr.de www.kbr.de